Do you want to publish a course? Click here

Analysis of $Lambda_b rar Lambda ell^+ ell^-$ transition in SM4 using form factors from Full QCD

217   0   0.0 ( 0 )
 Added by Kazem Azizi
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Using the responsible form factors calculated via full QCD, we analyze the $Lambda_{b}rightarrow Lambda ell^{+}ell^{-}$ transition in the standard model containing fourth generation quarks (SM4). We discuss effects of the presence of $t$ fourth family quark on related observables like branching ratio, forward-backward asymmetry, baryon polarization as well as double lepton polarization asymmetries. We also compare our results with those obtained in the SM as well as with predictions of the SM4 but using form factors calculated within heavy quark effective theory. The obtained results on branching ratio indicate that the $Lambda_{b}rightarrow Lambda ell^{+}ell^{-}$ transition is more probable in full QCD comparing to the heavy quark effective theory. It is also shown that the results on all considered observables in SM4 deviate considerably from the SM predictions when $m_{t}geq 400 GeV$.



rate research

Read More

112 - K. Azizi , N. Katirci 2010
Using the related form factors from full QCD which recently are available, we provide a comprehensive analysis of the $Lambda_b rightarrow Lambda ell^+ ell^-$ transition in universal extra dimension model in the presence of a single universal extra dimension called the Applequist-Cheng-Dobrescu model. In particular, we analyze some related observables like branching ratio, forward-backward asymmetry, double lepton polarization asymmetries and polarization of the $Lambda$ baryon in terms of compactification radius and corresponding form factors. We present the sensitivity of these observables to the compactification parameter, 1/R up to 1/R=1000 GeV. We also compare the results with those obtained using the form factors from heavy quark effective theory as well as the SM predictions.
203 - K. Azizi , S. Kartal , A. T. Olgun 2012
We work out the semileptonic $Lambda_brightarrow Lambda ell^+ ell^-$ transition in standard as well as different supersymmetric models. In particular, considering the parametrization of the matrix elements entered the low energy effective Hamiltonian in terms of form factors in full QCD, we calculate the amplitude and differential decay rate responsible for this decay channel in supersymmetric models. We then use the form factors calculated via light cone QCD sum rules in full theory to analyze the differential branching ratio and lepton forward-backward asymmetry of this decay channel in different supersymmetric models and compare the obtained results with those of the standard model. We also discuss how the results of different supersymmetric models deviate from the standard model predictions and which SUSY scenarios are favored.
We present the first lattice QCD determination of the $Lambda_b to Lambda^*(1520)$ vector, axial vector, and tensor form factors that are relevant for the rare decays $Lambda_b to Lambda^*(1520)ell^+ell^-$. The lattice calculation is performed in the $Lambda^*(1520)$ rest frame with nonzero $Lambda_b$ momenta, and is limited to the high-$q^2$ region. An interpolating field with covariant derivatives is used to obtain good overlap with the $Lambda^*(1520)$. The analysis treats the $Lambda^*(1520)$ as a stable particle, which is expected to be a reasonable approximation for this narrow resonance. A domain-wall action is used for the light and strange quarks, while the $b$ quark is implemented with an anisotropic clover action with coefficients tuned to produce the correct $B_s$ kinetic mass, rest mass, and hyperfine splitting. We use three different ensembles of lattice gauge-field configurations generated by the RBC and UKQCD collaborations, and perform extrapolations of the form factors to the continuum limit and physical pion mass. We give Standard-Model predictions for the $Lambda_b to Lambda^*(1520)ell^+ell^-$ differential branching fraction and angular observables in the high-$q^2$ region.
We present the first lattice-QCD determination of the form factors describing the semileptonic decays $Lambda_b to Lambda_c^*(2595)ell^-bar{ u}$ and $Lambda_b to Lambda_c^*(2625)ell^-bar{ u}$, where the $Lambda_c^*(2595)$ and $Lambda_c^*(2625)$ are the lightest charm baryons with $J^P=frac12^-$ and $J^P=frac32^-$, respectively. These decay modes provide new opportunities to test lepton flavor universality and also play an important role in global analyses of the strong interactions in $bto c$ semileptonic decays. We determine the full set of vector, axial vector, and tensor form factors for both decays, but only in a small kinematic region near the zero-recoil point. The lattice calculation uses three different ensembles of gauge-field configurations with $2+1$ flavors of domain-wall fermions, and we perform extrapolations of the form factors to the continuum limit and physical pion mass. We present Standard-Model predictions for the differential decay rates and angular observables. In the kinematic region considered, the differential decay rate for the $frac12^-$ final state is found to be approximately 2.5 times larger than the rate for the $frac32^-$ final state. We also test the compatibility of our form-factor results with zero-recoil sum rules.
Rare $b to sell^+ell^-$ flavour-changing-neutral-current processes provide important tests of the Standard Model of particle physics. Angular observables in exclusive $b to sell^+ell^-$ processes can be particularly powerful as they allow hadronic uncertainties to be controlled. Amongst the exclusive processes that have been studied by experiments, the decay $Lambda_bto Lambdaell^+ell^-$ is unique in that the $Lambda_b$ baryon can be produced polarised. In this paper, we derive an expression for the angular distribution of the $Lambda_bto Lambdaell^+ell^-$ decay for the case where the $Lambda_b$ baryon is produced polarised. This extends the number of angular observables in this decay from 10 to 34. Standard Model expectations for the new observables are provided and the sensitivity of the observables is explored under a variety of new physics models. At low-hadronic recoil, four of the new observables have a new short distance dependence that is absent in the unpolarised case. The remaining observables depend on the same short distance contributions as the unpolarised observables, but with different dependence on hadronic form-factors. These relations provide possibilities for novel tests of the SM that could be carried out with the data that will become available at the LHC or a future $e^+e^-$ collider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا