Do you want to publish a course? Click here

Symbolic analysis of slow solar wind data using rank order statistics

93   0   0.0 ( 0 )
 Added by Vinita Suyal
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze time series data of the fluctuations of slow solar wind velocity using rank order statistics. We selected a total of 18 datasets measured by the Helios spacecraft at a distance of 0.32 AU from the sun in the inner heliosphere. The datasets correspond to the years 1975-1982 and cover the end of the solar activity cycle 20 to the middle of the activity cycle 21. We first apply rank order statistics to time series from known nonlinear systems and then extend the analysis to the solar wind data. We find that the underlying dynamics governing the solar wind velocity remains almost unchanged during an activity cycle. However, during a solar activity cycle the fluctuations in the slow solar wind time series increase just before the maximum of the activity cycle



rate research

Read More

We carry out two-dimensional magnetohydrodynamic (MHD) simulations of an ensemble of Alfvenic fluctuations propagating in a structured, expanding solar wind including the presence of fast and slow solar wind streams. Using an appropriate expanding box model, the simulations incorporate the effects of fast-slow stream shear and compression and rarefaction self-consistently. We investigate the radial and longitudinal evolution of the cross-helicity, the total and residual energies and the power spectra of outward and inward Alfvenic fluctuations. The stream interaction is found to strongly affect the radial evolution of Alfvenic turbulence. The total energy in the Alfven waves is depleted within the velocity shear regions, accompanied by the decrease of the normalized cross-helicity. The presence of stream-compression facilitates this process. Residual energy fluctuates around zero due to the correlation and de-correlation between the inward/outward waves but no net growth or decrease of the residual energy is observed. The radial power spectra of the inward/outward Alfven waves show significant longitudinal variations. Kolmogorov-like spectra are developed only inside the fast and slow streams and when both the compression and shear are present. On the other hand, the spectra along the longitudinal direction show clear Kolmogorov-like inertial ranges in all cases.
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSPs fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a 1/f break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{deg} from the HCS, suggesting ~8{deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.
Solar wind measurements in the heliosphere are predominantly comprised of protons, alphas, and minor elements in a highly ionized state. The majority of low charge states, such as He$^{+}$, measured in situ are often attributed to pick up ions of non-solar origin. However, through inspection of the velocity distribution functions of near Earth measurements, we find a small but significant population of He$^+$ ions in the normal solar wind whose properties indicate that it originated from the Sun and has evolved as part of the normal solar wind. Current ionization models, largely governed by electron impact and radiative ionization and recombination processes, underestimate this population by several orders of magnitude. Therefore, to reconcile the singly ionized He observed, we investigate recombination of solar He$^{2+}$ through charge exchange with neutrals from circumsolar dust as a possible formation mechanism of solar He$^{+}$. We present an empirical profile of neutrals necessary for charge exchange to become an effective vehicle to recombine He$^{2+}$ to He$^{+}$ such that it meets observational He$^{+}$ values. We find the formation of He$^{+}$ is not only sensitive to the density of neutrals but also to the inner boundary of the neutral distribution encountered along the solar wind path. However, further observational constraints are necessary to confirm that the interaction between solar $alpha$ particles and dust neutrals is the primary source of the He$^{+}$ observations.
Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.
166 - Xiaolei Li , Yuming Wang , Rui Liu 2020
White-light images from Heliospheric Imager-1 (HI1) onboard the Solar Terrestrial Relations Observatory (STEREO) provide 2-dimensional (2D) global views of solar wind transients traveling in the inner heliosphere from two perspectives. How to retrieve the hidden three-dimensional (3D) features of the transients from these 2D images is intriguing but challenging. In our previous work (Li et al., 2018), a correlation-aided method is developed to recognize the solar wind transients propagating along the Sun-Earth line based on simultaneous HI1 images from two STEREO spacecraft. Here the method is extended from the Sun-Earth line to the whole 3D space to reconstruct the solar wind transients in the common field of view of STEREO HI1 cameras. We demonstrate the capability of the method by showing the 3D shapes and propagation directions of a coronal mass ejection (CME) and three small-scale blobs during 3-4 April 2010. Comparing with some forward modeling methods, we found our method reliable in terms of the position, angular width and propagation direction. Based on our 3D reconstruction result, an angular distorted, nearly North-South oriented CME on 3 April 2010 is revealed, manifesting the complexity of a CMEs 3D structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا