Survival of inhomogeneous Galton-Watson processes


Abstract in English

We study survival properties of inhomogeneous Galton-Watson processes. We determine the so-called branching number (which is the reciprocal of the critical value for percolation) for these random trees (conditioned on being infinite), which turns out to be an a.s. constant. We also shed some light on the way the survival probability varies between the generations. When we perform independent percolation on the family tree of an inhomogeneous Galton-Watson process, the result is essentially a family of inhomogeneous Galton-Watson processes, parametrized by the retention probability $p$. We provide growth rates, uniformly in $p$, of the percolation clusters, and also show uniform convergence of the survival probability from the $n$-th level along subsequences. These results also establish, as a corollary, the supercritical continuity of the percolation function. Some of our results are generalisations of results by Lyons (1992).

Download