Do you want to publish a course? Click here

The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

230   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions and galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.



rate research

Read More

This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological datasets. The limiting factor in this analysis is the theoretical modelling of the galaxy power spectrum, including non-linearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modelling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of 6 cosmological parameters, {Omega_b h^2, Omega_CDM h^2, H_0, tau, A_s, n_s}, and 5 supplementary parameters {n_run, r, w, Omega_k, sum m_nu}. In combination with the Cosmic Microwave Background (CMB), our results are consistent with the LambdaCDM concordance cosmology, with a measurement of the matter density of Omega_m =0.29 +/- 0.016 and amplitude of fluctuations sigma_8 = 0.825 +/- 0.017. Using WiggleZ data with CMB and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their LambdaCDM model values. The power spectra data and theoretical modelling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data . We also release the data and random catalogues used to construct the baryon acoustic oscillation correlation function.
We report evidence of ordered orbital motion in luminous star-forming galaxies at z~1.3. We present integral field spectroscopy (IFS) observations, performed with the OH Suppressing InfraRed Imaging Spectrograph (OSIRIS) system, assisted by laser guide star adaptive optics on the Keck telescope, of 13 star-forming galaxies selected from the WiggleZ Dark Energy Survey. Selected via ultraviolet and [OII] emission, the large volume of the WiggleZ survey allows the selection of sources which have comparable intrinsic luminosity and stellar mass to IFS samples at z>2. Multiple 1-2 kpc size sub-components of emission, or clumps, are detected within the Halpha spatial emission which extends over 6-10 kpc in 4 galaxies, resolved compact emission (r<3 kpc) is detected in 5 galaxies, and extended regions of Halpha emission are observed in the remaining 4 galaxies. We discuss these data in the context of different snapshots in a merger sequence and/or the evolutionary stages of coalescence of star-forming regions in an unstable disk. We find evidence of ordered orbital motion in galaxies as expected from disk models and the highest values of velocity dispersion (sigma>100 km/s) in the most compact sources. This unique data set reveals that the most luminous star-forming galaxies at z>1 are gaseous unstable disks indicating that a different mode of star formation could be feeding gas to galaxies at z>1, and lending support to theories of cold dense gas flows from the intergalactic medium.
The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond $Lambda$CDM. We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, $tau$, is known.
Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = -1.03 +/- 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find Omega_k = -0.004 +/- 0.006.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا