Do you want to publish a course? Click here

Recollimation Boundary Layers in Relativistic Jets

99   0   0.0 ( 0 )
 Added by Susanna Kohler
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the collimation of relativistic hydrodynamic jets by the pressure of an ambient medium in the limit where the jet interior has lost causal contact with its surroundings. For a jet with an ultrarelativistic equation of state and external pressure that decreases as a power of spherical radius, p propto r^(-eta), the jet interior will lose causal contact when eta > 2. However, the outer layers of the jet gradually collimate toward the jet axis as long as eta < 4, leading to the formation of a shocked boundary layer. Assuming that pressure-matching across the shock front determines the shape of the shock, we study the resulting structure of the jet in two ways: first by assuming that the pressure remains constant across the shocked boundary layer and looking for solutions to the shock jump equations, and then by constructing self-similar boundary-layer solutions that allow for a pressure gradient across the shocked layer. We demonstrate that the constant-pressure solutions can be characterized by four initial parameters that determine the jet shape and whether the shock closes to the axis. We show that self-similar solutions for the boundary layer can be constructed that exhibit a monotonic decrease in pressure across the boundary layer from the contact discontinuity to the shock front, and that the addition of this pressure gradient in our initial model generally causes the shock front to move outwards, creating a thinner boundary layer and decreasing the tendency of the shock to close. We discuss trends based on the value of the pressure power-law index eta.

rate research

Read More

We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
Hot relativistic jets, passing through a background medium with a pressure gradient p propto r^{-eta} where 2 < eta <= 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case eta = 8/3. Here we demonstrate that models with eta < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channeled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.
We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look down the barrel of the jet. These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.
It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا