Do you want to publish a course? Click here

Greedy routing on networks of mobile agents

356   0   0.0 ( 0 )
 Added by Han-Xin Yang
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

In this paper, we design a greedy routing on networks of mobile agents. In the greedy routing algorithm, every time step a packet in agent $i$ is delivered to the agent $j$ whose distance from the destination is shortest among searched neighbors of agent $i$. Based on the greedy routing, we study the traffic dynamics and traffic-driven epidemic spreading on networks of mobile agents. We find that the transportation capacity of networks and the epidemic threshold increase as the communication radius increases. For moderate moving speed, the transportation capacity of networks is the highest and the epidemic threshold maintains a large value. These results can help controlling the traffic congestion and epidemic spreading on mobile networks.



rate research

Read More

Routing protocols for Mobile Ad Hoc Networks (MANETs) have been extensively studied for more than fifteen years. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). Different position-based protocols use different strategies to pick the neighbor to forward the packet. If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void (no neighboring nodes) in the direction of the destination. Different position-based routing protocols use different methods for dealing with voids. In this paper, we use a simple backtracking technique to deal with voids and design a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB). We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) routing and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Our protocol needs much less routing-control packets than those needed by DSR, AODV, and GPSR. Simulation results also show that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count on average than AODV.
In an era where communication has a most important role in modern societies, designing efficient algorithms for data transmission is of the outmost importance. TDMA is a technology used in many communication systems such as satellite, cell phone as well as other wireless or mobile networks. Most 2G cellular systems as well as some 3G are TDMA based. In order to transmit data in such systems we need to cluster them in packages. To achieve a faster transmission we are allowed to preempt the transmission of any packet in order to resume at a later time. Preemption can be used to reduce idleness of some stations. Such preemptions though come with a reconfiguration cost in order to setup for the next transmission. In this paper we propose two algorithms which yield improved transmission scheduling. These two algorithms we call MGA and IMGA (Improved MGA). We have proven an approximation ratio for MGA and ran experiments to establish that it works even better in practice. In order to conclude that MGA will be a very helpful tool in constructing an improved schedule for packet routing using preemtion with a setup cost, we compare its results to two other efficient algorithms designed by researchers in the past: A-PBS(d+1) and GWA. To establish the efficiency of IMGA we ran experiments in comparison to MGA as well as A-PBS(d+1) and GWA. IMGA has proven to produce the most efficient schedule on all counts.
Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.
166 - A. Sabari , K. Duraiswamy , 2009
Multicasting is effective when its group members are sparse and the speed is low. On the other hand, broadcasting is effective when the group members dense and the speed are high. Since mobile ad hoc networks are highly dynamic in nature, either of the above two strategies can be adopted at different scenarios. In this paper, we propose an ant agent based adaptive, multicast protocol that exploits group members desire to simplify multicast routing and invoke broadcast operations in appropriate localized regimes. By reducing the number of group members that participate in the construction of the multicast structure and by providing robustness to mobility by performing broadcasts in densely clustered local regions, the proposed protocol achieves packet delivery statistics that are comparable to that with a pure multicast protocol but with significantly lower overheads. By our simulation results, we show that our proposed protocol achieves increased Packet Delivery Fraction (PDF) with reduced overhead and routing load.
For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing the network lifetime is the first concern in the related designing and maintaining activities. We study the network lifetime from the perspective of network science. In our dynamic network, nodes are assigned a fixed amount of energy initially and consume the energy in the delivery of packets. We divided the network traffic flow into four states: no, slow, fast, and absolute congestion states. We derive the network lifetime by considering the state of the traffic flow. We find that the network lifetime is generally opposite to traffic congestion in that the more congested traffic, the less network lifetime. We also find the impacts of factors such as packet generation rate, communication radius, node moving speed, etc., on network lifetime and traffic congestion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا