A study of mixing and indirect CP violation in D0 mesons through the determination of the parameters y_CP and A_Gamma is presented. The parameter y_CP is the deviation from unity of the ratio of effective lifetimes measured in D0 decays to the CP eigenstate K+K- with respect to decays to the Cabibbo favoured mode K-pi+. The result measured using data collected by LHCb in 2010, corresponding to an integrated luminosity of 29 pb^-1, is y_CP = (5.5+/-6.3_{stat}+/-4.1_{syst}) x 10^-3. The parameter A_Gamma is the asymmetry of effective lifetimes measured in decays of D0 and anti-D0 mesons to K+K-. The result is A_Gamma = (-5.9+/-5.9_{stat}+/-2.1_{syst}) x 10^-3. A data-driven technique is used to correct for lifetime-biasing effects.
The phenomenon of mixing in neutral meson systems has now been observed in all flavours, but only in the past year in the D0 system. The standard model anticipated that, for the charm sector, the mixing rate would be small, and also that CP violation, either in mixing or in direct decay, would be below the present levels of observability. It is hoped that further study of these phenomena might reveal signs of new physics. A review of recently available, experimental results is given.
Model-independent techniques for CP violation searches in multi-body charm decays are discussed. Examples of recent analyses from BaBar and LHCb are used to illustrate the experimental challenges involved.
Measurements of charm mixing parameters from the decay-time-dependent ratio of D0->K+pi- to D0->K-pi+ rates and the charge-conjugate ratio are reported. The analysis uses data, corresponding to 3 fb^{-1} of integrated luminosity, from proton-proton collisions at 7 and 8 TeV center-of-mass energies recorded by the LHCb experiment. In the limit of charge-parity (CP) symmetry, the mixing parameters are determined to be x^2=(5.5 +- 4.9)x10^{-5}, y= (4.8 +- 1.0)x10^{-3}, and R_D=(3.568 +- 0.066)x10^{-3}. Allowing for CP violation, the mixing parameters are determined separately for D0 and D0bar mesons yielding A_D = (-0.7 +- 1.9)%, for the direct CP-violating asymmetry, and 0.75 < |q/p|< 1.24 at the 68.3% confidence level, where q and p are parameters that describe the mass eigenstates of the neutral charm mesons in terms of the flavor eigenstates. This is the most precise determination of these parameters from a single experiment and shows no evidence for CP violation.
We present a measurement of the time-dependent charge-parity (CP) violation parameters in B0 -> pi+ pi- decays. The results are obtained from the final data sample containing 772 million BBbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We obtain the CP violation parameters Acp = +0.33 +/- 0.06 (stat) +/- 0.03 (syst) and Scp = -0.64 +/- 0.08 (stat) +/- 0.03 (syst), where Acp and Scp represent the direct and mixing-induced CP asymmetry, respectively. Using an isospin analysis including results from other Belle measurements, we find 23.8 < phi2 < 66.8 degrees is disfavored at the 1 sigma level, where phi2 is one of the three interior angles of the CKM unitarity triangle related to B_{u,d} decays.
An analysis of B0->D K*0 decays is presented, where D represents an admixture of D0 and D0b mesons reconstructed in four separate final states: K-pi+, pi-K+, K+K- and pi+pi-. The data sample corresponds to 3.0fb-1 of proton-proton collision, collected by the LHCb experiment. Measurements of several observables are performed, including CP asymmetries. The most precise determination is presented of rB(DK*0), the magnitude of the ratio of the amplitudes of the decay B0->D K+ pi- with a b->u or a b->c transition, in a K pi mass region of +/-50 MeV/c2 around the K*(892) mass and for an absolute value of the cosine of the K*0 helicity angle larger than 0.4.