No Arabic abstract
Entanglement swapping is a process by which two initially independent quantum systems can become entangled and generate nonlocal correlations. To characterize such correlations, we compare them to those predicted by bilocal models, where systems that are initially independent are described by uncorrelated states. We extend in this paper the analysis of bilocal correlations initiated in [Phys. Rev. Lett. 104, 170401 (2010)]. In particular, we derive new Bell-type inequalities based on the bilocality assumption in different scenarios, we study their possible quantum violations, and analyze their resistance to experimental imperfections. The bilocality assumption, being stronger than Bells standard local causality assumption, lowers the requirements for the demonstration of quantumness in entanglement swapping experiments.
Quantum mechanics admits correlations that cannot be explained by local realistic models. Those most studied are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. Here, we consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called bilocal models, which correspondingly involve two independent hidden variables. Such models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are employed. Using photonic qubits, we build such a linear three-node quantum network and demonstrate non-bilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of non-bilocality is more noise-tolerant than that of standard Bell non-locality in our three-party quantum network.
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(tau-tau)^2$ interaction between gauge-neutral local operators. Such theories have been argued to describe the hole-doped cuprates near optimal doping. We focus on a SU(2) gauge theory with $N_h$ flavors of adjoint Higgs fields undergoing a quantum transition between Higgs and confining phases: the $1/(tau-tau)^2$ interaction arises from a spectator large Fermi surface of electrons. The large $N_h$ expansion leads to an effective action containing fields which are bilocal in time but local in space. We find a strongly-coupled fixed point at order $1/N_h$, with dynamic critical exponent $z > 1$. We show that the entropy preserves hyperscaling, but nevertheless leads to a linear in temperature specific heat with a co-efficient which has a finite enhancement near the quantum critical point.
We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non- Gaussian states employed either as entangled inputs and/or as swapping resources. The quality of the swapping protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed by a general class of tunable non-Gaussian states, the squeezed Bell states, which, by means of controllable free parameters, allows for a continuous morphing from Gaussian twin beams up to maximally non-Gaussian squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections, we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for a monotonically increasing enhancement of the fidelity compared to the corresponding Gaussian setting. This result implies that the use of non-Gaussian resources is necessary to guarantee the success of continuous-variable entanglement swapping in the presence of decoherence.
Entanglement distillation is an essential building block in quantum communication protocols. Here, we study the class of near-term implementable distillation protocols that use bilocal Clifford operations followed by a single round of communication. We introduce tools to enumerate and optimise over all protocols for up to $n=5$ (not necessarily equal) Bell-diagonal states using a commodity desktop computer. Furthermore, by exploiting the symmetries of the input states, we find all protocols for up to $n=8$ copies of a Werner state. For the latter case, we present circuits that achieve the highest fidelity. These circuits have modest depth and number of two-qubit gates. Our results are based on a correspondence between distillation protocols and double cosets of the symplectic group, and improve on previously known protocols.
We study thermalization in the holographic (1+1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from a collision of two massless particles. We perform holographic computation of entanglement entropy and mutual information in the boundary theory and analyze their evolution with time. We show that equilibration of the entanglement in the regions which contained one of the initial excitations is generally similar to that in other holographic quench models, but with some important distinctions. We observe that entanglement propagates along a sharp effective light cone from the points of initial excitations on the boundary. The characteristics of entanglement propagation in the global quench models such as entanglement velocity and the light cone velocity also have a meaning in the bilocal quench scenario. We also observe the loss of memory about the initial state during the equilibration process. We find that the memory loss reflects on the time behavior of the entanglement similarly to the global quench case, and it is related to the universal linear growth of entanglement, which comes from the interior of the forming black hole. We also analyze general two-point correlation functions in the framework of the geodesic approximation, focusing on the study of the late time behavior.