Do you want to publish a course? Click here

XMM-Newton observation of 4U 1820-30: Broad band spectrum and the contribution of the cold interstellar medium

63   0   0.0 ( 0 )
 Added by Elisa Costantini
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of the bright X-ray binary 4U 1820-30, based mainly on XMM-Newton-RGS data, but using complementary data from XMM-Epic, Integral, and Chandra-HETG, to investigate different aspects of the source. The broad band continuum is well fitted by a classical combination of black body and Comptonized emission. The continuum shape and the high flux of the source (L/L_Eddsim0.16) are consistent with a high state of the source. We do not find significant evidence of iron emission at energies >=6.4 keV. The soft X-ray spectrum contain a number of absorption features. Here we focus on the cold-mildly ionized gas. The neutral gas column density is N_Hsim1.63x10^21 cm^-2. The detailed study of the oxygen and iron edge reveals that those elements are depleted, defined here as the ratio between dust and the total ISM cold phase, by a factor 0.20pm0.02 and 0.87pm0.14, respectively. Using the available dust models, the best fit points to a major contribution of Mg-rich silicates, with metallic iron inclusion. Although we find that a large fraction of Fe is in dust form, the fit shows that Fe-rich silicates are disfavored. The measured Mg:Fe ratio is 2.0pm0.3. Interestingly, this modeling may point to a well studied dust constituent (GEMS), sometimes proposed as a silicate constituent in our Galaxy. Oxygen and iron are found to be slightly over- and under-abundant, respectively (1.23 and 0.85 times the solar value) along this line of sight. We also report the detection of two absorption lines, tentatively identified as part of an outflow of mildly ionized gas (xisim-0.5) at a velocity of sim1200 km/s.



rate research

Read More

MCG-6-30-15, at a distance of 37 Mpc (z=0.008), is the archetypical Seyfert 1 galaxy showing very broad Fe K$alpha$ emission. We present results from a joint NuSTAR and XMM-Newton observational campaign that, for the first time, allows a sensitive, time-resolved spectral analysis from 0.35 keV up to 80 keV. The strong variability of the source is best explained in terms of intrinsic X-ray flux variations and in the context of the light bending model: the primary, variable emission is reprocessed by the accretion disk, which produces secondary, less variable, reflected emission. The broad Fe K$alpha$ profile is, as usual for this source, well explained by relativistic effects occurring in the innermost regions of the accretion disk around a rapidly rotating black hole. We also discuss the alternative model in which the broadening of the Fe K$alpha$ is due to the complex nature of the circumnuclear absorbing structure. Even if this model cannot be ruled out, it is disfavored on statistical grounds. We also detected an occultation event likely caused by BLR clouds crossing the line of sight.
134 - M. Matranga 2017
Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum has been observed by several instruments, and is therefore one of the best sources for this study. Methods: We use slightly different continuum and reflection models with respect to those adopted in literature for this source. In particular we fit the iron line and other reflection features with self-consistent reflection models as reflionx (with a power-law illuminating continuum modified with a high energy cutoff to mimic the shape of the incident Comptonization spectrum) and rfxconv. With these models we fit NuSTAR and XMM-Newton spectra yielding consistent spectral results. Results: Our results are in line with those already found by Miller et al. (2013) but less extreme. In particular, we find the inner disk radius at about 13 R_g and an inclination angle with respect to the line of sight of about 27 deg. We conclude that, while the choice of the reflection model has little impact on the disk parameters, as soon as a self-consistent model is used, the choice of the continuum model can be important in the precise determination of the disk parameters from the reflection component. Hence broad-band X-ray spectra are highly preferable to constrain the continuum and disk parameters.
We study the rapid X-ray time variability in all public data available from the textit{Rossi X-ray Timing Explorers} Proportional Counter Array on the atoll source 4U 1820--30 in the low-luminosity island state. A total of $sim46$ ks of data were used. We compare the frequencies of the variability components of 4U 1820--30 with those in other atolls sources. These frequencies were previously found to follow a universal scheme of correlations. We find that 4U 1820--30 shows correlations that are shifted by factors of $1.13pm0.01$ and $1.21pm0.02$ with respect to those in other atoll sources. These shifts are similar to, but smaller than the shift factor $sim1.45$ previously reported for some accreting millisecond pulsars. Therefore, 4U 1820--30 is the first atoll source which shows no significant pulsations but has a significant shift in the frequency correlations compared with other 3 non-pulsating atoll sources.
The ultracompact X-ray binary 4U 1820-30 is well known for its ~170-d superorbital modulation in X-ray flux and spectrum, and the exclusiveness of bursting behavior to the low hard island state. In May-June 2009, there was an exceptionally long 51-d low state. This state was well covered by X-ray observations and 12 bursts were detected, 9 with the high-throughput RXTE. We investigate the character of these X-ray bursts and find an interesting change in their photospheric expansion behavior. At the lowest inferred mass accretion rates, this expansion becomes very large in 4 bursts and reaches the so-called superexpansion regime. We speculate that this is due to the geometry of the inner accretion flow being spherical and a decreasing accretion rate: when the flow geometry nearest to the neutron star is spherical and the accretion rate is low, the ram pressure of the accretion disk may become too low to counteract that of the photospheric expansion. In effect, this may provide a novel means to probe the accretion flow. Additionally, we observe a peculiar effect: the well-known cessation of X-ray bursts in the high state is too quick to be consistent with a transition to stable helium burning. We suggest an alternative explanation, that the cessation is due to the introduction of a non-nuclear heat source in the neutron star ocean.
64 - D.R. Ballantyne 2004
Accretion from a disk onto a collapsed, relativistic star -- a neutron star or black hole -- is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk to fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in ~1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا