Do you want to publish a course? Click here

Measurement of the B^0_s - bar{B}^0_s oscillation frequency Delta m_s in B^0_s -> D_s^-(3) pi decays

113   0   0.0 ( 0 )
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The B^0_s-bar{B}^0_s oscillation frequency Delta m_s is measured with 36 pb^{-1} of data collected in pp collisions at sqrt{s} = 7 TeV by the LHCb experiment at the Large Hadron Collider. A total of 1381 B^0_s -> D_s^- pi^+ and B^0_s -> D_s^- pi^+ pi^- pi^+ signal decays are reconstructed, with average decay time resolutions of 44 fs and 36 fs, respectively. An oscillation signal with a statistical significance of 4.6 sigma is observed. The measured oscillation frequency is Delta m_s = 17.63 pm 0.11 (stat) pm 0.02 (syst) ps^{-1}.



rate research

Read More

The CKM angle $gamma$ is measured for the first time from mixing-induced $CP$ violation between $B^0_s rightarrow D_s^mp K^pm pi^pm pi^mp$ and $bar{B}^0_s rightarrow D_s^pm K^mp pi^mp pi^pm$ decays reconstructed in proton-proton collision data corresponding to an integrated luminosity of 9 ${rm fb}^{-1}$ recorded with the LHCb detector. A time-dependent amplitude analysis is performed to extract the $CP$-violating weak phase $gamma-2beta_s$ and, subsequently, $gamma$ by taking the $B^0_s$-$bar{B}^0_s$ mixing phase $beta_{s}$ as an external input. The measurement yields $gamma = (44 pm 12)^circ$ modulo $180^circ$, where statistical and systematic uncertainties are combined. An alternative model-independent measurement, integrating over the five-dimensional phase space of the decay, yields $gamma = (44^{,+,20}_{,-,13})^circ$ modulo $180^circ$. Moreover, the $B^0_s$-$bar{B}^0_s$ oscillation frequency is measured from the flavour-specific control channel $B^0_s rightarrow D_s^- pi^+ pi^+ pi^-$ to be $Delta m_s = (17.757 pm 0.007 ,({rm stat.}) pm 0.008 ,({rm syst.})) text{ps}^{-1}$, consistent with and more precise than the current world-average value.
The $B^0_s$ and $B^0$ mixing frequencies, $Delta m_s$ and $Delta m_d$, are measured using a data sample corresponding to an integrated luminosity of 1.0 fb^{-1} collected by the LHCb experiment in $pp$ collisions at a centre of mass energy of 7 TeV during 2011. Around 1.8x10^6 candidate events are selected of the type $B^0_{(s)} to D^-_{(s)} mu^+$ (+ anything), where about half are from peaking and combinatorial backgrounds. To determine the B decay times, a correction is required for the momentum carried by missing particles, which is performed using a simulation-based statistical method. Associated production of muons or mesons allows us to tag the initial-state flavour and so to resolve oscillations due to mixing. We obtain Delta m_s = (17.93 pm 0.22 (stat) pm 0.15 (syst)) ps^{-1}, Delta m_d = (0.503 pm 0.011 (stat) pm 0.013 (syst)) ps^{-1}. The hypothesis of no oscillations is rejected by the equivalent of 5.8 standard deviations for $B^0_s$ and 13.0 standard deviations for $B^0$. This is the first observation of $B^0_s$ mixing to be made using only semileptonic decays.
We determine hadronic matrix elements relevant for the mass and width differences, $Delta M_s$ & $Delta Gamma_s$ in the $B^0_s - bar{B^0_s}$ meson system using fully unquenched lattice QCD. We employ the MILC collaboration gauge configurations that include $u$, $d$ and $s$ sea quarks using the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement the valence $s$ quark also with the AsqTad action and use Nonrelativistic QCD for the valence $b$ quark. For the nonperturbative QCD input into the Standard Model expression for $Delta M_s$ we find $f_{B_s} sqrt{hat{B}_{B_s}} = 0.281(21)$GeV. Results for four-fermion operator matrix elements entering Standard Model formulas for $Delta Gamma_s$ are also presented.
The decays $B^0_s rightarrow J/psi pi^+pi^- K^+ K^-$ are studied using a data set corresponding to an integrated luminosity of 9fb$^{-1}$, collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13TeV. The decays $B^0_s rightarrow J/psi K^{ast0} bar{K}^{ast0}$ and $B^0_s rightarrow chi_{c1}(3872)K^+K^-$, where the $K^+K^-$ pair does not originate from a $phi$ meson, are observed for the first time. Precise measurements of the ratios of branching fractions between intermediate $chi_{c1}(3872)phi$, $J/psi K^{ast0}bar{K}^{ast0}$, $psi(2S)phi$ and $chi_{c1}(3872)K^+K^-$ states are reported. A structure, denoted as $X(4740)$, is observed in the $J/psiphi$ mass spectrum and, assuming a Breit-Wigner parameterisation, its mass and width are determined to be begin{eqnarray*} m_{X(4740)} & = & 4741 pm 6 pm 6,{mathrm{MeV}}/c^2 ,, Gamma_{X(4740)} & = & 53 pm 15 pm 11,{mathrm{MeV}} ,, end{eqnarray*} where the first uncertainty is statistical and the second is systematic. In addition, the most precise single measurement of the mass of the $B^0_s$ meson is performed and gives a value of $$ m_{B^0_s} = 5366.98 pm 0.07 pm 0.13,{mathrm{MeV}}/c^2,. $$
The first observation of the $B^0_stobar{D}^0 K^0_S$ decay mode and evidence for the $B^0_stobar{D}^{*0} K^0_S$ decay mode are reported. The data sample corresponds to an integrated luminosity of 3.0 $text{fb}^{-1}$ collected in $pp$ collisions by LHCb at center-of-mass energies of 7 and 8 TeV. The branching fractions are measured to be begin{align*} mathcal{B}(B^0_stobar{D}^0 bar{K}^0) &= (4.3pm0.5(text{stat})pm0.3(text{syst})pm0.3(text{frag})pm0.6(text{norm}))times10^{-4}, mathcal{B}(B^0_stobar{D}^{*0} bar{K}^0) &= (2.8pm1.0(text{stat})pm0.3(text{syst})pm0.2(text{frag})pm0.4(text{norm}))times10^{-4}, end{align*} where the uncertainties are due to contributions coming from statistical precision, systematic effects, and the precision of two external inputs, the ratio $f_s/f_d$ and the branching fraction of $B^0tobar{D}^0 K^0_S$, which is used as a calibration channel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا