Spectral and thermodynamic properties of a strong-leg quantum spin ladder


Abstract in English

The strong-leg S=1/2 Heisenberg spin ladder system (C7H10N)2CuBr4 is investigated using Density Matrix Renormalization Group (DMRG) calculations, inelastic neutron scattering, and bulk magneto-thermodynamic measurements. Measurements showed qualitative differences compared to the strong-rung case. A long-lived two-triplon bound state is confirmed to persist across most of the Brillouin zone in zero field. In applied fields, in the Tomonaga-Luttinger spin liquid phase, elementary excitations are attractive, rather than repulsive. In the presence of weak inter-ladder interactions, the strong-leg system is considerably more prone to 3-dimensional ordering.

Download