Real closed exponential fields


Abstract in English

In an extended abstract Ressayre considered real closed exponential fields and integer parts that respect the exponential function. He outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayres construction, which becomes canonical once we fix the real closed exponential field, a residue field section, and a well ordering of the field. The procedure is constructible over these objects; each step looks effective, but may require many steps. We produce an example of an exponential field $R$ with a residue field $k$ and a well ordering $<$ such that $D^c(R)$ is low and $k$ and $<$ are $Delta^0_3$, and Ressayres construction cannot be completed in $L_{omega_1^{CK}}$.

Download