Do you want to publish a course? Click here

A Parametric Study of Erupting Flux Rope Rotation. Modeling the Cartwheel CME on 9 April 2008

109   0   0.0 ( 0 )
 Added by Bernhard Kliem
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar in a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the Cartwheel CME on 9 April 2008, which has shown a rotation of approx 115 degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.



rate research

Read More

A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region and, despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature the presence of a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or EUV sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation, and coronal dimmings to determine the flux rope footpoints and, therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.
Coronal mass ejections (CMEs) and coronal jets are two types of common solar eruptive phenomena, which often independently happen at different spatial scales. In this work, we present a stereoscopic observation of a large-scale CME flux rope arising from an unwinding blowout jet in a multipolar complex magnetic system. Based on a multi-band observational analysis, we find that this whole event starts with a small filament whose eruption occurs at a coronal geyser site after a series of homologous jets. Aided by magnetic field extrapolations, it reveals that the coronal geyser site forms above an elongate opposite-polarity interface, where the emergence-driven photospheric flux cancellation and repetitive reconnection are responsible for those preceding recurrent jets and also contribute to the ultimate filament destabilization. By interacting with overlying fields, the erupting filament breaks one of its legs and results in an unwinding blowout jet. Our estimation suggests that around 1.4$-$2.0 turns of twist release in its jet spire. This prominent twist transport in jet spire rapidly creates a newborn larger-scale flux rope from the jet base to a remote site. Soon after its formation, this large-scale flux rope erupts towards the outer coronae causing an Earth-directed CME. In its source region, two sets of distinct post-flare loops form in succession, indicating this eruption involves two-stage of flare magnetic reconnection. This work not only reveals a real magnetic coupling process between different eruptive activities but provides a new hint for understanding the creation of large-scale CME flux ropes during the solar eruption.
66 - V.V. Grechnev 2016
A solar eruptive event SOL2010-06-13 observed with SDO/AIA has been discussed in the contexts of the CME gebesis and an associated EUV transient in terms of a shock driven by the apparent CME rim. We have revealed in this event an erupting flux rope, studied its properties, and detected wave signatures inside the developing CME. These findings have allowed us to establish new features in the genesis of the CME and associated EUV wave and to reconcile all of the episodes into a causally-related sequence. (1) A hot 11 MK flux rope developed from a compact filament, accelerated up to 3 km/s$^2$ 1 min before a hard X-ray burst and earlier than other structures, reached 420 km/s, and decelerated to 50 km/s. (2) The CME development was driven by the flux rope. Closed structures above the rope got sequentially involved in the expansion from below upwards, came closer together, and disappeared to reveal their envelope, the rim, which became the outer boundary of the cavity. The rim was associated with the separatrix surface of a magnetic domain, which contained the pre-eruptive filament. (3) The rim formation was associated with a successive compression of the upper active-region structures into the CME frontal structure (FS). When the rim was formed, it resembled a piston. (4) The disturbance responsible for the CME formation was excited by the flux rope inside the rim, and then propagated outward. EUV structures at different heights started to accelerate, when their trajectories in the distance-time diagram were crossed by the front of this disturbance. (5) Outside the rim and FS, the disturbance propagated like a blast wave, manifesting in a type II radio burst and a leading part of the EUV transient. Its main, trailing part was the FS, which consisted of swept-up 2 MK loops enveloping the rim. The wave decelerated and decayed soon, being not driven by the trailing piston, which slowed down.
This study examines the tail disconnection event on April 20, 2007 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a $180^circ$ sudden rotation of the interplanetary magnetic field (IMF), followed by a $90^circ$ gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the textit{in situ} IMF orientation of the CME encountering Encke.
Magnetic flux ropes play a central role in the physics of Coronal Mass Ejections (CMEs). Although a flux rope topology is inferred for the majority of coronagraphic observations of CMEs, a heated debate rages on whether the flux ropes pre-exist or whether they are formed on-the-fly during the eruption. Here, we present a detailed analysis of Extreme Ultraviolet observations of the formation of a flux rope during a confined flare followed about seven hours later by the ejection of the flux rope and an eruptive flare. The two flares occurred during 18 and 19 July 2012. The second event unleashed a fast (> 1000 km/s) CME. We present the first direct evidence of a fast CME driven by the prior formation and destabilization of a coronal magnetic flux rope formed during the confined flare on 18 July.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا