No Arabic abstract
Of the approximately 400 known Galactic classical novae, only ten of them, the recurrent novae, have been seen to erupt more than once. At least eight of these recurrents are known to harbor evolved secondary stars, rather than the main sequence secondaries typical in classical novae. In this paper, we propose a new nova classification system, based solely on the evolutionary state of the secondary, and not (like the current schemes) based on the properties of the outbursts. Using archival optical and near-infrared photometric observations of a sample of thirty eight quiescent Galactic novae we show that the evolutionary state of the secondary star in a quiescent system can predicted and several objects are identified for follow-up observations; CI Aql, V2487 Oph, DI Lac and EU Sct.
We report the results of a survey of M31 novae in quiescence. This is the first catalog of extragalactic systems in quiescence to be published, and contains data for 38 spectroscopically confirmed novae from 2006 to 2012. We used Liverpool Telescope (LT) images of each nova during eruption to define an accurate position for each system. These positions were then matched to archival Hubble Space Telescope (HST) images and we performed photometry on any resolved objects that were coincident with the eruption positions. The survey aimed to detect quiescent systems with red giant secondaries, as only these, along with a few systems with bright sub-giant secondaries, will be resolvable in the HST images. There are only a few confirmed examples of such red giant novae in our Galaxy, the majority of which are recurrent novae. However, we find a relatively high percentage of the nova eruptions in M31 may occur in systems containing red giant secondaries. Of the 38 systems in this catalog, 11 have a progenitor candidate whose probability of being a coincidental alignment is less than 5%. We show that, at the 3 sigma limit, up to only two of these eleven systems may be due to chance alignments, leading to an estimate of the M31 nova population with evolved secondaries of up to 24%, compared to the ~3% seen Galactically. Such an elevated proportion of nova systems with evolved secondaries may imply the presence of a much larger population of recurrent novae than previously thought. This would have considerable impact, particularly with regards their potential as Type Ia supernova progenitors.
In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (RG-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for eleven systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis we examine the distribution of optical decline times (t(2)) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t(2) distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that 30 (+13/-10) percent of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99 percent confidence level, >10 percent of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge, indeed the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations, and may be rare in old stellar populations, such as early-type galaxies.
Cataclysmic Variables (CVs) and Symbiotic Binaries are close (or not so close) binary star systems which contain both a white dwarf (WD) primary and a larger cooler secondary star that typically fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and a fraction of this material is accreted by the WD. Here we report on our hydrodynamic studies of the thermonuclear runaway (TNR) in the accreted material that ends in a Classical Nova explosion. We have followed the evolution of the TNRs on both carbon-oxygen (CO) and oxygen-neon (ONe) WDs. We report on 3 studies in this paper. First, simulations in which we accrete only solar matter using NOVA (our 1-D, fully implicit, hydro code). Second, we use MESA for similar studies in which we accrete only Solar matter and compare the results. Third, we accrete solar matter until the TNR is ongoing and then switch the composition in the accreted layers to a mixed composition: either 25% WD and 75% solar or 50% WD and 50% Solar matter. We find that the amount of accreted material is inversely proportional to the initial 12C abundance (as expected). Thus, accreting solar matter results in a larger amount of accreted material to fuel the outburst; much larger than in earlier studies where a mixed composition was assumed from the beginning of the simulation. Our most important result is that all these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit.
Novae are the observable outcome of a transient thermonuclear runaway on the surface of an accreting white dwarf in a close binary system. Their high peak luminosity renders them visible in galaxies out beyond the distance of the Virgo Cluster. Over the past century, surveys of extragalactic novae, particularly within the nearby Andromeda Galaxy, have yielded substantial insights regarding the properties of their populations and sub-populations. The recent decade has seen the first detailed panchromatic studies of individual extragalactic novae and the discovery of two probably related sub-groups: the faint-fast and the rapid recurrent novae. In this review we summarise the past 100 years of extragalactic efforts, introduce the rapid recurrent sub-group, and look in detail at the remarkable faint-fast, and rapid recurrent, nova M31N 2008-12a. We end with a brief look forward, not to the next 100 years, but the next few decades, and the study of novae in the upcoming era of wide-field and multi-messenger time-domain surveys.
Eruptions of classical novae are possible sources of lithium formation and gamma-ray emission. Nova remnants can also become Type Ia supernovae (SNe Ia). The contribution of novae to these phenomena depends on nova rates, which are not well established for the Galaxy. Here, we directly measure a Galactic bulge nova rate of $13.8 pm 2.6$ per year. This measurement is much more accurate than any previous measurement of this kind thanks to many years monitoring of the bulge by the Optical Gravitational Lensing Experiment (OGLE) survey. Our sample consists of 39 novae eruptions, $sim$1/3 of which are OGLE-based discoveries. This long-term monitoring allows us to not only measure the nova rate but also to study in detail the light curves of 39 eruptions and more than 80 post-nova candidates. We measured orbital periods for 9 post-novae and 9 novae, and in 14 cases we procured the first estimates. The OGLE survey is very sensitive to the frequently erupting recurrent novae. We did not find any object similar to M31 2008-12a, which erupts once a year. The lack of detection indicates that there is only a small number of them in the Galactic bulge.