Cells grown in culture act as a model system for analyzing the effects of anticancer compounds, which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization techniques have been generally employed to minimize the variation in cell cycle position. However, synchronization techniques are cumbersome and imprecise and the agents used to synchronize the cells potentially have other unknown effects on the cells. An alternative approach is to determine the age structure in the population and account for the cell cycle positional effects post hoc. Here we provide a formalism to use quantifiable age distributions from live cell microscopy experiments to parameterize an age-structured model of cell population response.
We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of transport type. Specifically, it consists of a structured population equation with a nonlinear feedback loop. This models the signaling process due to cytokines, which regulate the differentiation and proliferation process. We compare the continuous model to its discrete counterpart, a multi-compartmental model of a discrete collection of cell subpopulations recently proposed by Marciniak-Czochra et al. in 2009 to investigate the dynamics of the hematopoietic system. We obtain uniform bounds for the solutions, characterize steady state solutions, and analyze their linearized stability. We show how persistence or extinction might occur according to values of parameters that characterize the stem cells self-renewal. We also perform numerical simulations and discuss the qualitative behavior of the continuous model vis a vis the discrete one.
How far is neuroepithelial cell proliferation in the developing central nervous system a deterministic process? Or, to put it in a more precise way, how accurately can it be described by a deterministic mathematical model? To provide tracks to answer this question, a deterministic system of transport and diffusion partial differential equations, both physiologically and spatially structured, is introduced as a model to describe the spatially organized process of cell proliferation during the development of the central nervous system. As an initial step towards dealing with the three-dimensional case, a unidimensional version of the model is presented. Numerical analysis and numerical tests are performed. In this work we also achieve a first experimental validation of the proposed model, by using cell proliferation data recorded from histological sections obtained during the development of the optic tectum in the chick embryo.
Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels -- interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase the risk of developing drug resistance. Although the existence of tumor heterogeneity has been known for two centuries, a clear understanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH). The coexistence of different subpopulations within a single tumor has been shown to play crucial roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory and public goods game, often invoked in the context of the tragedy of commons, we explore how the interactions among subclone populations influence the establishment of ITH. By using an evolutionary model, which unifies several experimental results in distinct cancer types, we develop quantitative theoretical models for explaining data from {it in vitro} experiments involving pancreatic cancer as well as {it vivo} data in glioblastoma multiforme. Such physical and mathematical models complement experimental studies, and could optimistically also provide new ideas for the design of efficacious therapies for cancer patients.
This paper is devoted to the analysis of a mathematical model of blood cells production in the bone marrow (hematopoiesis). The model is a system of two age-structured partial differential equations. Integrating these equations over the age, we obtain a system of two nonlinear differential equations with distributed time delay corresponding to the cell cycle duration. This system describes the evolution of the total cell populations. By constructing a Lyapunov functional, it is shown that the trivial equilibrium is globally asymptotically stable if it is the only equilibrium. It is also shown that the nontrivial equilibrium, the most biologically meaningful one, can become unstable via a Hopf bifurcation. Numerical simulations are carried out to illustrate the analytical results. The study maybe helpful in understanding the connection between the relatively short cell cycle durations and the relatively long periods of peripheral cell oscillations in some periodic hematological diseases.
We study a mathematical model describing the dynamics of a pluripotent stem cell population involved in the blood production process in the bone marrow. This model is a differential equation with a time delay. The delay describes the cell cycle duration and is uniformly distributed on an interval. We obtain stability conditions independent of the delay. We also show that the distributed delay can destabilize the entire system. In particularly, it is shown that Hopf bifurcations can occur.
Pierre Gabriel
,Shawn P. Garbett
,Vito Quaranta
.
(2011)
.
"The contribution of age structure to cell population responses to targeted therapeutics"
.
Pierre Gabriel
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا