No Arabic abstract
We study minority games in efficient regime. By incorporating the utility function and aggregating agents with similar strategies we develop an effective mesoscale notion of state of the game. Using this approach, the game can be represented as a Markov process with substantially reduced number of states with explicitly computable probabilities. For any payoff, the finiteness of the number of states is proved. Interesting features of an extensive random variable, called aggregated demand, viz. its strong inhomogeneity and presence of patterns in time, can be easily interpreted. Using Markov theory and quenched disorder approach, we can explain important macroscopic characteristics of the game: behavior of variance per capita and predictability of the aggregated demand. We prove that in case of linear payoff many attractors in the state space are possible.
We present a comprehensive study of utility function of the minority game in its efficient regime. We develop an effective description of state of the game. For the payoff function $g(x)=sgn (x)$ we explicitly represent the game as the Markov process and prove the finitness of number of states. We also demonstrate boundedness of the utility function. Using these facts we can explain all interesting observable features of the aggregated demand: appearance of strong fluctuations, their periodicity and existence of prefered levels. For another payoff, $g(x)=x$, the number of states is still finite and utility remains bounded but the number of states cannot be reduced and probabilities of states are not calculated. However, using properties of the utility and analysing the game in terms of de Bruijn graphs, we can also explain distinct peaks of demand and their frequencies.
What is the physical origin of player cooperation in minority game? And how to obtain maximum global wealth in minority game? We answer the above questions by studying a variant of minority game from which players choose among $N_c$ alternatives according to strategies picked from a restricted set of strategy space. Our numerical experiment concludes that player cooperation is the result of a suitable size of sampling in the available strategy space. Hence, the overall performance of the game can be improved by suitably adjusting the strategy space size.
The recent COVID-19 pandemic has led to an increasing interest in the modeling and analysis of infectious diseases. The pandemic has made a significant impact on the way we behave and interact in our daily life. The past year has witnessed a strong interplay between human behaviors and epidemic spreading. In this paper, we propose an evolutionary game-theoretic framework to study the coupled evolutions of herd behaviors and epidemics. Our framework extends the classical degree-based mean-field epidemic model over complex networks by coupling it with the evolutionary game dynamics. The statistically equivalent individuals in a population choose their social activity intensities based on the fitness or the payoffs that depend on the state of the epidemics. Meanwhile, the spreading of the infectious disease over the complex network is reciprocally influenced by the players social activities. We analyze the coupled dynamics by studying the stationary properties of the epidemic for a given herd behavior and the structural properties of the game for a given epidemic process. The decisions of the herd turn out to be strategic substitutes. We formulate an equivalent finite-player game and an equivalent network to represent the interactions among the finite populations. We develop structure-preserving approximation techniques to study time-dependent properties of the joint evolution of the behavioral and epidemic dynamics. The resemblance between the simulated coupled dynamics and the real COVID-19 statistics in the numerical experiments indicates the predictive power of our framework.
Animals live in groups to defend against predation and to obtain food. However, for some animals --- especially ones that spend long periods of time feeding --- there are costs if a group chooses to move on before their nutritional needs are satisfied. If the conflict between feeding and keeping up with a group becomes too large, it may be advantageous to some animals to split into subgroups of animals with similar nutritional needs. We model the costs and benefits of splitting by a herd of cows using a cost function (CF) that quantifies individual variation in hunger, desire to lie down, and predation risk. We model the costs associated with hunger and lying desire as the standard deviations of individuals within a group, and we model predation risk as an inverse exponential function of group size. We minimize the cost function over all plausible groups that can arise from a given herd and study the dynamics of group splitting. We explore our model using two examples: (1) we consider group switching and group fission in a herd of relatively homogeneous cows; and (2) we examine a herd with an equal number of adult males (larger animals) and adult females (smaller animals).
The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction $q$ of `optimal agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.