Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/pi+ ratios are computed.
Interaction cross sections and charged pion spectra in p+C interactions at 31 GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS. These data are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. A set of data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of a nuclear interaction length was used for the analysis. The measured p+C inelastic and production cross sections are 257.2 +- 1.9 +- 8.9 mb and 229.3 +- 1.9 +- 9.0 mb, respectively. Inclusive production cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in 10 intervals of the laboratory polar angle covering the range from 0 up to 420 mrad. The spectra are compared with predictions of several hadron production models.
Spectra of K0S mesons and Lambda hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K0S and Lambda production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for K0S and Lambda are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K0S mean multiplicity in production processes <n_K0S> and the inclusive cross section for K0S production were measured and amount to 0.127 +- 0.005 (stat) +- 0.022 (sys) and 29.0 +- 1.6 (stat) +- 5.0 (sys) mb, respectively.
Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of $pi^pm$, $K^pm$, p, $K^0_S$ and $Lambda$ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.
The production cross section of 30.92 GeV/$c$ protons on carbon is measured by the NA61/SHINE spectrometer at the CERN SPS by means of beam attenuation in a copy (replica) of the 90-cm-long target of the T2K neutrino oscillation experiment. The employed method for direct production cross-section estimation minimizes model corrections for elastic and quasi-elastic interactions. The obtained production cross section is $sigma_mathrm{prod}~=~227.6~pm~0.8mathrm{(stat)}~_{-~3.2}^{+~1.9}mathrm{(sys)}~{-~0.8}mathrm{(mod)}$ mb. It is in agreement with previous NA61/SHINE results obtained with a thin carbon target, while providing improved precision with a total fractional uncertainty of less than 2$%$. This direct measurement is performed to reduce the uncertainty on the T2K neutrino flux prediction associated with the re-weighting of the interaction rate of neutrino-yielding hadrons.
The NA61/SHINE Collaboration: N. Abgrall
,A. Aduszkiewicz
,T. Anticic
.
(2011)
.
"Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c"
.
Silvestro di Luise
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا