Do you want to publish a course? Click here

Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program

139   0   0.0 ( 0 )
 Added by Anna Franckowiak
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of lesssim 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusion. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3times10^{51} erg, respectively, does not exceed 4.2% at 90% confidence.



rate research

Read More

Several on-going or planned synoptic optical surveys are offering or will soon be offering an unprecedented opportunity for discovering larger samples of the rarest types of stripped-envelope core-collapse supernovae (SNe), such as those associated with relativistic jets, mildly-relativistic ejecta, or strong interaction with the circumstellar medium (CSM). Observations at radio wavelengths are a useful tool to probe the fastest moving ejecta, as well as denser circumstellar environments, and can thus help us identify the rarest type of core-collapse explosions. Here, we discuss how to set up an efficient radio follow-up program to detect and correctly identify radio-emitting stripped-envelope core-collapse explosions. We use a method similar to the one described in citealt{Carbone2018}, and determine the optimal timing of GHz radio observations assuming a sensitivity comparable to that of the Karl G. Jansky Very Large Array. The optimization is done so as to ensure that the collected radio observations can identify the type of explosion powering the radio counterpart by using the smallest possible amount of telescope time. We also present a previously unpublished upper-limit on the late-time radio emission from supernova iPTF17cw. Finally, we conclude by discussing implications for follow-up in the X-rays.
184 - N. Bucciantini 2009
We use ideal axisymmetric relativistic magnetohydrodynamic simulations to calculate the spindown of a newly formed millisecond, B ~ 10^{15} G, magnetar and its interaction with the surrounding stellar envelope during a core-collapse supernova (SN) explosion. The mass, angular momentum, and rotational energy lost by the neutron star are determined self-consistently given the thermal properties of the cooling neutron stars atmosphere and the winds interaction with the surrounding star. The magnetar drives a relativistic magnetized wind into a cavity created by the outgoing SN shock. For high spindown powers (~ 10^{51}-10^{52} ergs/s), the magnetar wind is super-fast at almost all latitudes, while for lower spindown powers (~ 10^{50} erg/s), the wind is sub-fast but still super-Alfvenic. In all cases, the rates at which the neutron star loses mass, angular momentum, and energy are very similar to the corresponding free wind values (<~ 30% differences), in spite of the causal contact between the neutron star and the stellar envelope. In addition, in all cases that we consider, the magnetar drives a collimated (~5-10 deg.) relativistic jet out along the rotation axis of the star. Nearly all of the spindown power of the neutron star escapes via this polar jet, rather than being transferred to the more spherical SN explosion. The properties of this relativistic jet and its expected late-time evolution in the magnetar model are broadly consistent with observations of long duration gamma-ray bursts (GRBs) and their associated broad-lined Type Ic SN.
282 - C. D. Ott 2012
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27-solar-mass progenitor was studied in 2D by B. Mueller et al. (ApJ 761:72, 2012), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
Light axion-like particles (ALPs) are expected to be abundantly produced in core-collapse supernovae (CCSNe), resulting in a $sim$10-second long burst of ALPs. These particles subsequently undergo conversion into gamma-rays in external magnetic fields to produce a long gamma-ray burst (GRB) with a characteristic spectrum peaking in the 30--100-MeV energy range. At the same time, CCSNe are invoked as progenitors of {it ordinary} long GRBs, rendering it relevant to conduct a comprehensive search for ALP spectral signatures using the observations of long GRB with the textit{Fermi} Large Area Telescope (LAT). We perform a data-driven sensitivity analysis to determine CCSN distances for which a detection of an ALP signal is possible with the LATs low-energy (LLE) technique which, in contrast to the standard LAT analysis, allows for a a larger effective area for energies down to 30~MeV. Assuming an ALP mass $m_a lesssim 10^{-10}$~eV and ALP-photon coupling $g_{agamma} = 5.3times 10^{-12}$ GeV$^{-1}$, values considered and deduced in ALP searches from SN1987A, we find that the distance limit ranges from $sim!0.5$ to $sim!10$~Mpc, depending on the sky location and the CCSN progenitor mass. Furthermore, we select a candidate sample of twenty-four GRBs and carry out a model comparison analysis in which we consider different GRB spectral models with and without an ALP signal component. We find that the inclusion of an ALP contribution does not result in any statistically significant improvement of the fits to the data. We discuss the statistical method used in our analysis and the underlying physical assumptions, the feasibility of setting upper limits on the ALP-photon coupling, and give an outlook on future telescopes in the context of ALP searches.
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. New observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and the progenitor stars circumstellar material. The most distinct trend is an increase in the strength of [O III]/([O I]+[O II]) with age, and a decline in Halpha/([O I]+[O II]) which is broadly consistent with the view that the reverse shock has passed through the H envelope of the ejecta in many of these objects. We also present a spatially integrated spectrum of the young Galactic supernova remnant Cassiopeia A (Cas A). Similarities observed between the emission line profiles of the 330 yr old Cas A remnant and decades old CCSNe suggest that observed emission line asymmetry in evolved CCSN spectra may be associated with dust in the ejecta, and that minor peak substructure typically interpreted as clumps or blobs of ejecta may instead be linked with large-scale rings of SN debris.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا