No Arabic abstract
The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an ~50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observed by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies >300 MeV with a delay of ~10 s from mildly relativistic electrons, but some reached these energies in as little as ~3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma rays.
We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1 $pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in the energy range of 60--160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.0$^o$ $pm$0.1$^o$.
We report hard X-ray and gamma-ray observations of the impulsive phase of the SOL2017-09-06T11:55 X9.3 solar flare. We focus on a high-energy part of the spectrum, >100 keV, and perform time resolved spectral analysis for a portion of the impulsive phase, recorded by the Konus-Wind experiment, that displayed prominent gamma-ray emission. Given a variety of possible emission components contributing to the gamma-ray emission, we employ a Bayesian inference to build the most probable fitting model. The analysis confidently revealed contributions from nuclear deexcitation lines, electron-positron annihilation line at 511 keV, and a neutron capture line at 2.223 MeV along with two components of the bremsstrahlung continuum. The revealed time evolution of the spectral components is particularly interesting. The low-energy bremsstrahlung continuum shows a soft-hard-soft pattern typical for impulsive flares, while the high-energy one shows a persistent hardening at the course of the flare. The neutron capture line emission shows an unusually short time delay relative to the nuclear deexcitation line component, which implies that the production of neutrons was significantly reduced soon after the event onset. This in turn may imply a prominent softening of the accelerated proton spectrum at the course of the flare, similar to the observed softening of the low-energy component of the accelerated electrons responsible for the low-energy bremsstrahlung continuum. We discuss possible physical scenarios, which might result in the obtained relationships between these gamma-ray components.
We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3 away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma < 3.72x 10 ^{-8} ph (>100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.
Stellar flares have been extensively studied in soft X-rays (SXR) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a $gamma$-ray burst (GRB). In this work, we estimate the expected $gamma$-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding $pi^0$-decay $gamma$-ray emission could be detectable from stellar superflares with ground-based $gamma$-ray telescopes. On the other hand, the detection of $gamma$-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M-dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of $gamma$-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.
We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of $sim0.5$ keV except for the OVII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the OVIII and NVII Lya lines also peak. In contrast, the peak of the OVII forbidden line is about 10$$ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the OVII triplet mapped by the Chandra data shows that most of the OVII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the OVII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous OVII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.