No Arabic abstract
Whether the Cygnus X complex consists of one physically connected region of star formation or of multiple independent regions projected close together on the sky has been debated for decades. The main reason for this puzzling scenario is the lack of trustworthy distance measurements. We aim to understand the structure and dynamics of the star-forming regions toward Cygnus X by accurate distance and proper motion measurements. To measure trigonometric parallaxes, we observed 6.7 GHz methanol and 22 GHz water masers with the European VLBI Network and the Very Long Baseline Array. We measured the trigonometric parallaxes and proper motions of five massive star-forming regions toward the Cygnus X complex and report the following distances within a 10% accuracy: 1.30+-0.07 kpc for W 75N, 1.46^{+0.09}_{-0.08} kpc for DR 20, 1.50^{+0.08}_{-0.07} kpc for DR 21, 1.36^{+0.12}_{-0.11} kpc for IRAS20290+4052, and 3.33+-0.11kpc for AFGL 2591. While the distances of W 75N, DR 20, DR 21, and IRAS 20290+4052 are consistent with a single distance of 1.40+-0.08 kpc for the Cygnus X complex, AFGL 2591 is located at a much greater distance than previously assumed. The space velocities of the four star-forming regions in the Cygnus X complex do not suggest an expanding Stroemgren sphere.
H2D+ is a primary ion which dominates the gas-phase chemistry of cold dense gas. Therefore it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is however just beginning to be understood in low-mass prestellar and cluster-forming cores. In high mass star forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here we present the first map of the 372 GHz ortho-H2D+ and N2H+ 4-3 transition in the DR21 filament of Cygnus-X with the JCMT, and N2D+ 3--2 and dust continuum with the SMA. We have discovered five very extended (<= 34000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster forming cores and needs to be refined: neither dust continuum with existing capabilities, nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high mass star-forming region.
The Cygnus-X star-forming complex is one of the most active regions of low and high mass star formation within 2 kpc of the Sun. Using mid-infrared photometry from the IRAC and MIPS Spitzer Cygnus-X Legacy Survey, we have identified over 1800 protostar candidates. We compare the protostellar luminosity functions of two regions within Cygnus-X: CygX-South and CygX-North. These two clouds show distinctly different morphologies suggestive of dissimilar star-forming environments. We find the luminosity functions of these two regions are statistically different. Furthermore, we compare the luminosity functions of protostars found in regions of high and low stellar density within Cygnus-X and find that the luminosity function in regions of high stellar density is biased to higher luminosities. In total, these observations provide further evidence that the luminosities of protostars depend on their natal environment. We discuss the implications this dependence has for the star formation process.
We present analysis of 25 years worth of archival VLA, VLBA and EVN observations of the X-ray binary Cygnus X-3. From this, we deduce the source proper motion, allowing us to predict the location of the central binary system at any given time. However, the line of sight is too scatter-broadened for us to measure a parallactic distance to the source. The measured proper motion allows us to constrain the three-dimensional space velocity of the system, implying a minimum peculiar velocity of 9 km/s. Reinterpreting VLBI images from the literature using accurate core positions shows the jet orientation to vary with time, implying that the jets are oriented close to the line of sight and are likely to be precessing.
Cygnus X is one of the most complex areas in the sky. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. Understanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a Pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15 and a velocity resolution of ~0.4km/s using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the Pathfinder, 27 of them previously unknown. Sequentially triggered star formation is a widespread phenomenon.
Radio continuum observations detect non-thermal synchrotron and thermal bremsstrahlung radiation. Separation of the two different emission components is crucial to study the properties of diffuse interstellar medium. The Cygnus X region is one of the most complex areas in the radio sky which contains a number of massive stars and HII regions on the diffuse thermal and non-thermal background. More supernova remnants are expected to be discovered. We aim to develop a method which can properly separate the non-thermal and thermal radio continuum emission and apply it to the Cygnus X region. The result can be used to study the properties of different emission components and search for new supernova remnants in the complex. Multi-frequency radio continuum data from large-scale surveys are used to develop a new component separation method. Spectral analysis is done pixel by pixel for the non-thermal synchrotron emission with a realistic spectral index distribution and a fixed spectral index of beta = -2.1 for the thermal bremsstrahlung emission. With the new method, we separate the non-thermal and thermal components of the Cygnus X region at an angular resolution of 9.5arcmin. The thermal emission component is found to comprise 75% of the total continuum emission at 6cm. Thermal diffuse emission, rather than the discrete HII regions, is found to be the major contributor to the entire thermal budget. A smooth non-thermal emission background of 100 mK Tb is found. We successfully make the large-extent known supernova remnants and the HII regions embedded in the complex standing out, but no new large SNRs brighter than Sigma_1GHz = 3.7 x 10^-21 W m^-2 Hz^-1 sr^-1 are found.