No Arabic abstract
The observational study of star formation relations in galaxies is central to unraveling the physical processes at work on local and global scales. We wish to expand the sample of extreme starbursts, represented by local LIRGs and ULIRGs, with high quality observations in the 1-0 line of HCN. We study if a universal law can account for the star formation relations observed for the dense molecular gas in normal star forming galaxies and extreme starbursts. We have used the IRAM 30m telescope to observe a sample of 19 LIRGs in the 1-0 lines of CO, HCN and HCO+. The analysis of the new data proves that the efficiency of star formation in the dense molecular gas (SFE-dense) of extreme starbursts is a factor 3-4 higher compared to normal galaxies. We find a duality in Kennicutt-Schmidt (KS) laws that is reinforced if we account for the different conversion factor for HCN (alpha-HCN) in extreme starbursts and for the unobscured star formation rate in normal galaxies. This result extends to the higher molecular densities probed by HCN lines the more extreme bimodal behavior of star formation laws, derived from CO molecular lines by two recent surveys. We have confronted our observations with the predictions of theoretical models in which the efficiency of star formation is determined by the ratio of a constant star formation rate per free-fall time (SFR-ff) to the local free-fall time. We find that it is possible to fit the observed differences in the SFE-dense between normal galaxies and LIRGs/ULIRGs using a common constant SFR-ff and a set of physically acceptable HCN densities, but only if SFR-ff~0.005-0.01 and/or if alpha-HCN is a factor of a few lower than our favored values. Star formation recipes that explicitly depend on the galaxy global dynamical time scales do not significantly improve the fit to the new HCN data presented in this work.
The enormous amounts of infrared (IR) radiation emitted by luminous infrared galaxies (LIRGs, L_IR=10^11-10^12Lsun) and ultraluminous infrared galaxies (ULIRGs, L_IR>10^12Lsun) are produced by dust heated by intense star formation (SF) activity and/or an active galactic nucleus (AGN). The elevated star formation rates and high AGN incidence in (U)LIRGs make them ideal candidates to study the interplay between SF and AGN activity in the local universe. In this paper I review recent results on the physical extent of the SF activity, the AGN detection rate (including buried AGN), the AGN bolometric contribution to the luminosity of the systems, as well as the evolution of local LIRGs and ULIRGs. The main emphasis of this review is on recent results from IR observations.
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
We use Halpha and FUV GALEX data for a large sample of nearby objects to study the high mass star formation activity of normal late-type galaxies. The data are corrected for dust attenuation using the most accurate techniques at present available, namely the Balmer decrement and the total far-infrared to FUV flux ratio. The sample shows a highly dispersed distribution in the Halpha to FUV flux ratio indicating that two of the most commonly used star formation tracers give star formation rates with uncertainties up to a factor of 2-3. The high dispersion is due to the presence of AGN, where the UV and the Halpha emission can be contaminated by nuclear activity, highly inclined galaxies, for which the applied extinction corrections are probably inaccurate, or starburst galaxies, where the stationarity in the star formation history required for transforming Halpha and UV luminosities into star formation rates is not satisfied. Excluding these objects we reach an uncertainty of ~50% on the SFR. The Halpha to FUV flux ratio increases with their total stellar mass. If limited to normal star forming galaxies, however, this relationship reduces to a weak trend that might be totally removed using different extinction correction recipes. In these objects the Halpha to FUV flux ratio seems also barely related with the FUV-H colour, the H band effective surface brightness, the total star formation activity and the gas fraction. The data are consistent with a Kroupa and Salpeter initial mass function in the high mass stellar range and imply, for a Salpeter IMF, that the variations of the slope cannot exceed 0.25, from g=2.35 for massive galaxies to g=2.60 in low luminosity systems. We show however that these observed trends, if real, can be due to the different micro history of star formation in massive galaxies with respect to dwarf.
We present deep {it Spitzer} mid-infrared spectroscopy, along with 16, 24, 70, and 850,$micron$ photometry, for 22 galaxies located in the Great Observatories Origins Deep Survey-North (GOODS-N) field. The sample spans a redshift range of $0.6la z la 2.6$, 24~$mu$m flux densities between $sim$0.2$-$1.2 mJy, and consists of submillimeter galaxies (SMGs), X-ray or optically selected active galactic nuclei (AGN), and optically faint ($z_{AB}>25$,mag) sources. We find that infrared (IR; $8-1000~micron$) luminosities derived by fitting local spectral energy distributions (SEDs) with 24~$micron$ photometry alone are well matched to those when additional mid-infrared spectroscopic and longer wavelength photometric data is used for galaxies having $zla1.4$ and 24~$micron$-derived IR luminosities typically $la 3times 10^{12}~L_{sun}$. However, for galaxies in the redshift range between $1.4la z la 2.6$, typically having 24~$micron$-derived IR luminosities $ga 3times 10^{12}~L_{sun}$, IR luminosities are overestimated by an average factor of $sim$5 when SED fitting with 24~$micron$ photometry alone. This result arises partly due to the fact that high redshift galaxies exhibit aromatic feature equivalent widths that are large compared to local galaxies of similar luminosities. Through a spectral decomposition of mid-infrared spectroscopic data, we are able to isolate the fraction of IR luminosity arising from an AGN as opposed to star formation activity. This fraction is only able to account for $sim$30% of the total IR luminosity among the entire sample.
We present the results of a {it Hubble Space Telescope} ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local Universe. We find that by adopting a Bruzual & Charlot simple stellar population (SSP) model and Salpeter initial mass function, the age distribution of clusters declines as $dN/dtau = tau^{-0.9 +/- 0.3}$, consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occuring in the strong tidal fields of merging galaxies. The large number of $10^{6} M_{odot}$ young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local Universe. The observed cluster mass distribution of $dN/dM = M^{-1.95 +/- 0.11}$ is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.