No Arabic abstract
Allan Sandage was an observational astronomer who was happiest at a telescope. On Hubbles sudden death Allan Sandage inherited the programmes using the worlds largest optical telescope at Palomar to determine the distances and number counts of galaxies. Over many years he greatly revised the distance scale and, on re-working Hubbles analysis, discovered the error that had led Hubble to doubt the interpretation of the galaxies redshifts as an expansion of the universe. Sandage showed that there was a consistent age of Creation for the stars, the elements, and the Cosmos. Through work with Baade and Schwarzschild he discovered the key to the interpretation of the colour-magnitude diagrams of star clusters in terms of stellar evolution. With others he founded Galactic Archaeology, interpreting the motions and elemental abundances of the oldest stars in terms of a model for the Galaxys formation. He published several fine atlasses and catalogues of galaxies and a definitive history of the Mount Wilson Observatory.
Context. 3C 454.3 is a very active flat spectrum radio quasar (blazar) that has undergone a recent outburst in all observed bands, including the optical. Aims. In this work we explore the short-term optical variability of 3C 454.3 during its outburst by searching for time delays between different optical bands. Finding one would be important for understanding the evolution of the spectrum of the relativistic electrons, which generate the synchrotron jet emission. Methods. We performed photometric monitoring of the object by repeating exposures in different optical bands (BVRI). Occasionally, different telescopes were used to monitor the object in the same band to verify the reliability of the smallest variations we observed. Results. Except on one occasion, where we found indications of a lag of the blue wavelengths behind the red ones, the results are inconclusive for most of the other cases. There were either no structures in the light curves to be able to search for patterns, or else different approaches led to different conclusions.
We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from November 2010 through January 2011. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at gamma-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this dataset, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation anlaysis of the millimeter, far-infrared, and gamma-ray light curves show that the variations were essentially simultaneous, indicative of co-spatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomegeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale core, whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70 percent during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.
I review the history and development of Modified Newtonian Dynamics (MOND) beginning with the phenomenological basis as it existed in the early 1980s. I consider Milgroms papers of 1983 introducing the idea and its consequences for galaxies and galaxy groups, as well as the initial reactions, both negative and positive. The early criticisms were primarily on matters of principle, such as the absence of conservation laws and perceived cosmological problems; an important step in addressing these issues was the development of the Lagrangian-based non-relativistic theory of Bekenstein and Milgrom. This theory led to the development of a tentative relativistic theory that formed the basis for later multi-field theories of gravity. On an empirical level the predictive success of the idea with respect to the phenomenology of galaxies presents considerable challenges for cold dark matter. For MOND the essential challenge remains the absence of a generally accepted theoretical underpinning of the idea and, thus, cosmological predictions. I briefly review recent progress in this direction. Finally I discuss the role and sociology of unconventional ideas in astronomy in the presence of a strongly entrenched standard paradigm.
The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the constants of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed, or completely prevented, if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the universe that astronomers observe (perhaps even involving many big bangs), which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world.
Donald Lynden-Bells many contributions to astrophysics encompass general relativity, galactic dynamics, telescope design and observational astronomy. In the 1960s, his papers on stellar dynamics led to fundamental insights into the equilibria of elliptical galaxies, the growth of spiral patterns in disc galaxies and the stability of differentially rotating, self-gravitating flows. Donald introduced the ideas of `violent relaxation and `the gravothermal catastrophe in pioneering work on the thermodynamics of galaxies and negative heat capacities. He shared the inaugural Kavli Prize in Astrophysics in 2008 for his contributions to our understanding of quasars. His prediction that dead quasars or supermassive black holes may reside in the nuclei of nearby galaxies has been confirmed by multiple pieces of independent evidence. His work on accretion discs led to new insights into their workings, as well as the realisation that the infrared excess in T Tauri stars was caused by protostellar discs around these young stars. He introduced the influential idea of monolithic collapse of a gas cloud as a formation mechanism for the Milky Way Galaxy. As this gave way to modern ideas of merging and accretion as drivers of galaxy formation, Donald was the first to realise the importance of tidal streams as measures of the past history and present day gravity field of the Galaxy. Though primarily a theorist, Donald participated in one of the first observational programs to measure the large-scale streaming of nearby galaxies. This led to the discovery of the `Great Attractor. The depth and versatility of his contributions mark Donald out as one of the most influential and pre-eminent astronomers of his day.