Do you want to publish a course? Click here

Superconducting gap structure of CeIrIn5 from field-angle-resolved measurements of its specific heat

190   0   0.0 ( 0 )
 Added by Shunichiro Kittaka
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angular oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).

rate research

Read More

The field-angle-resolved specific heat C(T,H,phi) of the f-electron superconductor CeRu2 (Tc=6.3 K) has been measured at low temperatures down to 90 mK on two single crystals of slightly different qualities. We reveal that the C(phi) oscillation in a rotating magnetic field, originating from the gap anisotropy, diminishes at low temperatures below the characteristic field H*, as expected for an anisotropic gap without nodes. We also observe the suppression of H* by decreasing the gap anisotropy ratio $Delta_{rm min}/Delta_{rm max}$, a behavior that has been predicted from a microscopic theory for anisotropic s-wave superconductors. The present technique is established as a powerful tool for investigating minimum-gap structures as well as nodal structures.
The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($sim 0.04T_{rm c}$). Except near $H_{rm c2}$, its fourfold specific-heat oscillation under an in-plane rotating magnetic field is unlikely to change its sign down to the lowest temperature of 0.06 K. This feature is qualitatively different from nodal quasiparticle excitations of a quasi-two-dimensional superconductor possessing vertical lines of gap minima. The overall specific-heat behavior of Sr$_2$RuO$_4$ can be explained by Doppler-shifted quasiparticles around horizontal line nodes on the Fermi surface, whose in-plane Fermi velocity is highly anisotropic, along with the occurrence of the Pauli-paramagnetic effect. These findings, in particular, the presence of horizontal line nodes in the gap, call for a reconsideration of the order parameter of Sr$_2$RuO$_4$.
Low-energy quasiparticle (QP) excitations in the heavy-fermion superconductor URu$_2$Si$_2$ were investigated by specific-heat $C(T, H, phi, theta)$ measurements of a high-quality single crystal. The occurrence of QP excitations due to the Doppler-shift effect was detected regardless of the field direction in $C(H)$ of the present clean sample, which is in sharp contrast to a previous report. Furthermore, the polar-angle-dependent $C(theta)$ measured under a rotating magnetic field within the ac plane exhibits a shoulder-like anomaly at $theta sim 45$ deg and a sharp dip at $theta = 90$ deg ($H parallel a$) in the moderate-field region. These features are supported by theoretical analyses based on microscopic calculations assuming the gap symmetry of $k_z(k_x+ik_y)$, whose gap structure is characterized by a combination of a horizontal line node at the equator and point nodes at the poles. The present results have settled the previous controversy over the gap structure of URu$_2$Si$_2$ and have authenticated its chiral $d$-wave superconductivity.
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of states reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multi-band superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.
148 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable ($Delta$ $sim$ 11 meV) to that of the inner electron and hole pockets ($sim$12 meV), although it is substantially larger than that of the outer hole pocket ($sim$6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with $Delta$($k$) = $Delta$$_0$cos$k_x$cos$k_y$ formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا