Do you want to publish a course? Click here

LAGRANGE: LAser GRavitational-wave ANtenna at GEo-lunar Lagrange points

104   0   0.0 ( 0 )
 Added by John Conklin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a new space gravitational wave observatory design called LAGRANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in the most stable geocentric formation, the Earth-Moon L3, L4, and L5 Lagrange points. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter AuPt sphere with a 35 mm gap to its enclosure serves as a single inertial reference per spacecraft, which is operated in true drag-free mode (no test mass forcing). This is the core of the Modular Gravitational Reference Sensor whose other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the inter-test mass ranging and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with in-field pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include the drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE sub-systems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.



rate research

Read More

Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal frequencies were in the kHz range. Weber also pointed out that monitoring of vibrations of Earth or Moon could reveal gravitational waves in the mHz band. His Lunar Surface Gravimeter experiment deployed on the Moon by the Apollo 17 crew had a technical failure rendering the data useless. In this article, we revisit the idea and propose a Lunar Gravitational-Wave Antenna (LGWA). We find that LGWA could become an important partner observatory for joint observations with the space-borne, laser-interferometric detector LISA, and at the same time contribute an independent science case due to LGWAs unique features. Technical challenges need to be overcome for the deployment of the experiment, and development of inertial vibration sensor technology lays out a future path for this exciting detector concept.
The first terrestrial gravitational wave interferometers have dramatically underscored the scientific value of observing the Universe through an entirely different window, and of folding this new channel of information with traditional astronomical data for a multimessenger view. The Laser Interferometer Space Antenna (LISA) will broaden the reach of gravitational wave astronomy by conducting the first survey of the millihertz gravitational wave sky, detecting tens of thousands of individual astrophysical sources ranging from white-dwarf binaries in our own galaxy to mergers of massive black holes at redshifts extending beyond the epoch of reionization. These observations will inform - and transform - our understanding of the end state of stellar evolution, massive black hole birth, and the co-evolution of galaxies and black holes through cosmic time. LISA also has the potential to detect gravitational wave emission from elusive astrophysical sources such as intermediate-mass black holes as well as exotic cosmological sources such as inflationary fields and cosmic string cusps.
The Earth-Moon-Sun system has traditionally provided the best laboratory for testing the strong equivalence principle. For a decade, the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has been producing the worlds best lunar laser ranging data. At present, a single observing session of about an hour yields a distance measurement with uncertainty of about 2~mm, an order of magnitude advance over the best pre-APOLLO lunar laser ranging data. However, these superb data have not yet yielded scientific results commensurate with their accuracy, number, and temporal distribution. There are two reasons for this. First, even in the relatively clean environment of the Earth-Moon system, a large number of effects modify the measured distance importantly and thus need to be included in the analysis model. The second reason is more complicated. The traditional problem with the analysis of solar-system metric data is that the physical model must be truncated to avoid extra parameters that would increase the condition number of the estimator. Even in a typical APOLLO analysis that does not include parameters of gravity physics, the condition number is very high: $8 times 10^{10}$.
123 - Wenlin Tang , Peng Xu , Songjie Hu 2017
The Doppler tracking data of the Change 3 lunar mission is used to constrain the stochastic background of gravitational wave in cosmology within the 1 mHz to 0.05 Hz frequency band. Our result improves on the upper bound on the energy density of the stochastic background of gravitational wave in the 0.02 Hz to 0.05 Hz band obtained by the Apollo missions, with the improvement reaching almost one order of magnitude at around 0.05 Hz. Detailed noise analysis of the Doppler tracking data is also presented, with the prospect that these noise sources will be mitigated in future Chinese deep space missions. A feasibility study is also undertaken to understand the scientific capability of the Change 4 mission, due to be launched in 2018, in relation to the stochastic gravitational wave background around 0.01 Hz. The study indicates that the upper bound on the energy density may be further improved by another order of magnitude from the Change 3 mission, which will fill the gap in the frequency band from 0.02 Hz to 0.1 Hz in the foreseeable future.
Detuning the signal-recycling cavity length from a cavity resonance significantly improves the quantum noise beyond the standard quantum limit, while there is no km-scale gravitational-wave detector successfully implemented the technique. The detuning technique is known to introduce great excess noise, and such noise can be reduced by a laser modulation system with two Mach-Zehnder interferometers in series. This modulation system, termed Mach-Zehnder Modulator (MZM), also makes the control of the gravitational-wave detector more robust by introducing the third modulation field which is non-resonant in any part of the main interferometer. On the other hand, mirror displacements of the Mach-Zehnder interferometers arise a new kind of noise source coupled to the gravitational-wave signal port. In this paper, the displacement noise requirement of the MZM is derived, and also results of our proof-of-principle experiment is reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا