Do you want to publish a course? Click here

Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene

138   0   0.0 ( 0 )
 Added by Stefan Heun
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

On the SiC(0001) surface (the silicon face of SiC), epitaxial graphene is obtained by sublimation of Si from the substrate. The graphene film is separated from the bulk by a carbon-rich interface layer (hereafter called the buffer layer) which in part covalently binds to the substrate. Its structural and electronic properties are currently under debate. In the present work we report scanning tunneling microscopy (STM) studies of the buffer layer and of quasi-free-standing monolayer graphene (QFMLG) that is obtained by decoupling the buffer layer from the SiC(0001) substrate by means of hydrogen intercalation. Atomic resolution STM images of the buffer layer reveal that, within the periodic structural corrugation of this interfacial layer, the arrangement of atoms is topologically identical to that of graphene. After hydrogen intercalation, we show that the resulting QFMLG is relieved from the periodic corrugation and presents no detectable defect sites.



rate research

Read More

We report a Raman study of the so-called buffer layer with $(6sqrt3times6sqrt3)R30^{circ}$ periodicity which forms the intrinsic interface structure between epitaxial graphene and SiC(0001). We show that this interface structure leads to a nonvanishing signal in the Raman spectrum at frequencies in the range of the D- and G-band of graphene and discuss its shape and intensity. Ab-initio phonon calculations reveal that these features can be attributed to the vibrational density of states of the buffer-layer.
182 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet is an extended layer that is more than twice the thickness of a bulk SiC bilayer (~1.7A compared to 0.63A). The distance from this interface layer to the first graphene sheet is much smaller than the graphite interlayer spacing but larger than the same distance measured for graphene grown on the (000-1) surface, as predicted previously by ab intio calculations.
The intercalation of epitaxial graphene on SiC(0001) with Ca has been studied extensively, yet precisely where the Ca resides remains elusive. Furthermore, the intercalation of Mg underneath epitaxial graphene on SiC(0001) has not been reported. Here, we use low energy electron diffraction, x-ray photoelectron spectroscopy, secondary electron cut-off photoemission and scanning tunneling microscopy to elucidate the physical and electronic structure of both Ca- and Mg-intercalated epitaxial graphene on 6H-SiC(0001). We find that Ca intercalates underneath the buffer layer and bonds to the Si-terminated SiC surface, breaking the C-Si bonds of the buffer layer i.e. freestanding the buffer layer to form Ca-intercalated quasi-freestanding bilayer graphene (Ca-QFSBLG). The situation is similar for the Mg-intercalation of epitaxial graphene on SiC(0001), where an ordered Mg-terminated reconstruction at the SiC surface and Mg bonds to the Si-terminated SiC surface are formed, resulting in Mg-intercalated quasi-freestanding bilayer graphene (Mg-QFSBLG). Ca-intercalation underneath the buffer layer has not been considered in previous studies of Ca-intercalated epitaxial graphene. Furthermore, we find no evidence that either Ca or Mg intercalates between graphene layers. However, we do find that both Ca-QFSBLG and Mg-QFSBLG exhibit very low workfunctions of 3.68 and 3.78 eV, respectively, indicating high n-type doping. Upon exposure to ambient conditions, we find Ca-QFSBLG degrades rapidly, whereas Mg-QFSBLG remains remarkably stable.
Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder ($simpm$ 0.15$^{circ}$) of graphene domains in graphene grown on SiC(0001) samples. In addition to the direct benefit in the understanding of graphenes electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا