Do you want to publish a course? Click here

Evolution from localized to intermediate valence regime in Ce2Cu2-xNixIn

235   0   0.0 ( 0 )
 Added by Adam Pikul
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polycrystalline samples of the solid solution Ce2Cu2-xNixIn were studied by means of x-ray powder diffraction, magnetic susceptibility and electrical resistivity measurements performed in a wide temperature range. Partial substitution of copper atoms by nickel atoms results in quasi-linear decrease of the lattice parameters and the unit cell volume of the system. The lattice compression leads to an increase in the exchange integral and yields a reversal in the order of the magnetic 4f1 and nonmagnetic 4f0 states, being in line with the Doniach phase diagram. In the localized regime, where an interplay of the Kondo scattering and the crystalline electric field effect takes place, the rise in the hybridization strength is accompanied with relative reduction in the scattering conduction electrons on excited crystal field levels. (c) 2011 IOP Publishing Ltd.



rate research

Read More

The novel ternary compound CeCo$_9$Si$_4$ has been studied by means of specific heat, magnetisation, and transport measurements. Single crystal X-ray Rietveld refinements reveal a fully ordered distribution of Ce, Co and Si atoms with the tetragonal space group I4/mcm isostructural with other RCo9Si4. The smaller lattice constants of CeCo9Si4 in comparison with the trend established by other RCo9Si4 is indicative for intermediate valence of cerium. While RCo9Si4 with R= Pr, .. Tb, and Y show ferromagnetism and LaCo9Si4 is nearly ferromagnetic, CeCo9Si4 remains paramagnetic even in external fields as large as 40 T, though its electronic specific heat coefficient (g~190 mJ/molK^2) is of similar magnitude as that of metamagnetic LaCo9Si4 and weakly ferromagnetic YCo9Si4.
We investigated the onset of the many-body coherence in the f-orbital single crystalline alloys Ce(1-x)Yb(x)CoIn5 through thermodynamic and magneto-transport measurements. Our study shows the evolution of the many-body electronic state as the Kondo lattice of Ce moments is transformed into an array of Ce impurities. Specifically, we observe a smooth crossover from the predominantly localized Ce moment regime to the predominantly itinerant Yb f-electronic states regime for about 50% of Yb doping. Our analysis of the residual resistivity data unveils the presence of correlations between Yb ions, while from our analysis of specific heat data we conclude that for 0.65<x<0.775, ytterbium f-electrons strongly interact with the conduction electrons while the Ce moments remain completely decoupled. The sub-linear temperature dependence of resistivity across the whole range of Yb concentrations suggest the presence of a nontrivial scattering mechanism for the conduction electrons.
114 - W. B. Jiang , L. Yang , C. Y. Guo 2015
We report measurements of the physical properties and electronic structure of the hexagonal compounds Yb2Ni12Pn7 (Pn = P, As) by measuring the electrical resistivity, magnetization, specific heat and partial fluorescence yield x-ray absorption spectroscopy (PFY-XAS). These demonstrate a crossover upon reducing the unit cell volume, from an intermediate valence state in Yb2Ni12As7 to a heavy-fermion paramagnetic state in Yb2Ni12P7, where the Yb is nearly trivalent. Application of pressure to Yb2Ni12P7 suppresses T_FL, the temperature below which Fermi liquid behavior is recovered, suggesting the presence of a quantum critical point (QCP) under pressure. However, while there is little change in the Yb valence of Yb2Ni12P7 up to 30 GPa, there is a strong increase for Yb2Ni12As7 under pressure, before a near constant value is reached. These results indicate that any magnetic QCP in this system is well separated from strong valence fluctuations. The pressure dependence of the valence and lattice parameters of Yb2Ni12As7 are compared and at 1 GPa, there is an anomaly in the unit cell volume as well as a change in the slope of the Yb valence, indicating a correlation between structural and electronic changes.
79 - J. Derr , G. Knebel , G. Lapertot 2005
The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been confirmed. A drastic change in the p variation of the Neel temperature (Tn) is observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase linearly with p. A similar linear p increase of Tn is observed for the quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8 GPa, i.e. at a pressure slightly higher than the pressure of the insulator to metal transition. However a homogeneous magnetic phase occurs only above 10 GPa. The magnetic and electronic properties are related to the renormalization of the 4f wavefunction either to the divalent or the trivalent configurations. As observed in SmS, long range magnetism in SmB6 occurs already far below the pressure where a trivalent Sm3+ state will be reached. It seems possible, to describe roughly the physical properties of the intermediate valence equilibrium by assuming formulas for the Kondo lattice temperature depending on the valence configuration. Comparison is also made with the appearance of long range magnetism in cerium and ytterbium heavy fermion compounds.
Quantum materials that feature magnetic long-range order often reveal complex phase diagrams when localized electrons become mobile. In many materials magnetism is rapidly suppressed as electronic charges dissolve into the conduction band. In materials where magnetism persists, it is unclear how the magnetic properties are affected. Here we study the evolution of the magnetic structure in Nd(1-x)Ce(x)CoIn(5) from the localized to the highly itinerant limit. We observe two magnetic ground states inside a heavy-fermion phase that are detached from unconventional superconductivity. The presence of two different magnetic phases provides evidence that increasing charge delocalization affects the magnetic interactions via anisotropic band hybridization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا