Do you want to publish a course? Click here

LENDA, a Low Energy Neutron Detector Array for experiments with radioactive beams in inverse kinematics

258   0   0.0 ( 0 )
 Added by Georgios Perdikakis
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Lab- oratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p, n) charge-exchange reactions at intermediate energies (> 100 MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV - 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neutron energy threshold of < 150 keV, an intrinsic time (position) resolution of sim 400 ps (sim 6 cm) and an efficiency > 20 % for neutrons below 4 MeV have been obtained.



rate research

Read More

New measurements and reaction model calculations are reported for single neutron pickup reactions onto a fast uc{22}{Mg} secondary beam at 84 MeV per nucleon. Measurements were made on both carbon and beryllium targets, having very different structures, allowing a first investigation of the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and $gamma$-ray spectroscopy of the projectile-like reaction residue for final-state resolution, that permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the $ uc{12}{C} ( uc{22}{Mg}, uc{23}{Mg}+gamma)X$ reaction largely proceeds as a direct two-body reaction, the neutron transfer producing bound uc{11}{C} target residues. The corresponding reaction on the uc{9}{Be} target seems to largely leave the uc{8}{Be} residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei, and also their expected sensitivity to neutron high-$ell$ (intruder) states which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
The neutron lifetime is important in understanding the production of light nuclei in the first minutes after the big bang and it provides basic information on the charged weak current of the standard model of particle physics. Two different methods have been used to measure the neutron lifetime: disappearance measurements using bottled ultracold neutrons and decay rate measurements using neutron beams. The best measurements using these two techniques give results that differ by nearly 4 standard deviations. In this paper we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons that provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We present results obtained using our method.
The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the <N/Z> of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions.
A compact, quasi-4pi position sensitive silicon array, TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the -ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The 14N(d,p)15N reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the 15N ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.
The neutron lifetime is one of the basic parameters in the weak interaction, and is used for predicting the light element abundance in the early universe. Our group developed a new setup to measure the lifetime with the goal precision of 0.1% at the polarized beam branch BL05 of MLF, J-PARC. The commissioning data was acquired in 2014 and 2015, and the first set of data to evaluate the lifetime in 2016, which is expected to yield a statistical uncertainty of O(1)%. This paper presents the current analysis results and the future plans to achieve our goal precision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا