Do you want to publish a course? Click here

The Star Formation History of M32

194   0   0.0 ( 0 )
 Added by Antonela Monachesi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute som40%+/- 17% of M32s mass, while 55%+/-21% of M32s mass comes from stars older than 5 Gyr. The mass-weighted mean age and metallicity of M32 at F1 are <Age>=6.8+/-1.5 Gyr and <[M/H]>=-0.01+/-0.08 dex. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H]sim-0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining sim3% of the mass is in young metal-rich stars. Line-strength indices computed from the SFH imply a light-weighted mean age and metallicity of 4.9 Gyr and [M/H] = -0.12 dex, and single-stellar-population-equivalent parameters of 2.9+/-0.2 Gyr and [M/H]=0.02+/-0.01 dex at F1 (~2.7 re). This contradicts spectroscopic studies that show a steep age gradient from M32s center to 1re. The inferred SFH of the M31 background field F2 reveals that the majority of its stars are old, with sim95% of its mass already acquired 5-14 Gyr ago. It is composed of two dominant populations; sim30%+/-7.5% of its mass is in a 5-8 Gyr old population, and sim65%+/-9% of the mass is in a 8-14 Gyr old population. The mass-weighted mean age and metallicity of F2 are <Age>=9.2+/-1.2 Gyr and <[M/H]>=-0.10+/-0.10 dex, respectively. Our results suggest that the inner disk and spheroid populations of M31 are indistinguishable from those of the outer disk and spheroid. Assuming the mean age of M31s disk at F2 (sim1 disk scale length) to be 5-9 Gyr, our results agree with an inside-out disk formation scenario for M31s disk.



rate research

Read More

If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
206 - Stefano Rubele 2009
The rich SMC star cluster NGC419 has recently been found to present both a broad main sequence turn-off and a dual red clump of giants, in the sharp colour-magnitude diagrams (CMD) derived from the High Resolution Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope. In this work, we apply to the NGC419 data the classical method of star formation history (SFH) recovery via CMD reconstruction, deriving for the first time this function for a star cluster with multiple turn-offs. The values for the cluster metallicity, reddening, distance and binary fraction, were varied within the limits allowed by present observations. The global best-fitting solution is an excellent fit to the data, reproducing all the CMD features with striking accuracy. The corresponding star formation rate is provided together with estimates of its random and systematic errors. Star formation is found to last for at least 700 Myr, and to have a marked peak at the middle of this interval, for an age of 1.5 Gyr. Our findings argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1 Gyr. It remains to be tested whether alternative hypotheses, such as a main sequence spread caused by rotation, could produce similarly good fits to the data.
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the parameters of the model to determine which physical processes are dominant and which aspects of the model are robust. Generically, we find that SF is limited by the build-up of dark matter haloes at high redshift, reaches a broad maximum at intermediate redshift, then decreases as it is quenched by lower cooling rates in hotter and lower density gas, gas exhaustion, and self-regulated feedback from stars and black holes. The higher redshift SF is therefore mostly determined by the cosmological parameters and to a lesser extent by photo-heating from reionization. The location and height of the peak in the SF history, and the steepness of the decline towards the present, depend on the physics and implementation of stellar and black hole feedback. Mass loss from intermediate-mass stars and metal-line cooling both boost the SF rate at late times. Galaxies form stars in a self-regulated fashion at a rate controlled by the balance between, on the one hand, feedback from massive stars and black holes and, on the other hand, gas cooling and accretion. Paradoxically, the SF rate is highly insensitive to the assumed SF law. This can be understood in terms of self-regulation: if the SF efficiency is changed, then galaxies adjust their gas fractions so as to achieve the same rate of production of massive stars. Self-regulated feedback from accreting black holes is required to match the steep decline in the observed SF rate below redshift two, although more extreme feedback from SF, for example in the form of a top-heavy IMF at high gas pressures, can help.
We study the radial structure of the stellar mass surface density ($mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the star formation history (SFH) in spheroidal and disk dominated galaxies with masses from 10$^9$ to 10$^{12}$ M$_odot$. We derive the half mass radius, and we find that galaxies are on average 15% more compact in mass than in light. HMR/HLR decreases with increasing mass for disk galaxies, but is almost constant in spheroidal galaxies. We find that the galaxy-averaged stellar population age, stellar extinction, and $mu$ are well represented by their values at 1 HLR. Negative radial gradients of the stellar population ages support an inside-out formation. The larger inner age gradients occur in the most massive disk galaxies that have the most prominent bulges; shallower age gradients are obtained in spheroids of similar mass. Disk and spheroidal galaxies show negative $mu$ gradients that steepen with stellar mass. In spheroidal galaxies $mu$ saturates at a critical value that is independent of the galaxy mass. Thus, all the massive spheroidal galaxies have similar local $mu$ at the same radius (in HLR units). The SFH of the regions beyond 1 HLR are well correlated with their local $mu$, and follow the same relation as the galaxy-averaged age and $mu$; suggesting that local stellar mass surface density preserves the SFH of disks. The SFH of bulges are, however, more fundamentally related to the total stellar mass, since the radial structure of the stellar age changes with galaxy mass even though all the spheroid dominated galaxies have similar radial structure in $mu$. Thus, galaxy mass is a more fundamental property in spheroidal systems while the local stellar mass surface density is more important in disks.
148 - M. Cignoni , E. Sabbi (3 2009
Deep HST/ACS photometry of the young cluster NGC 602, located in the remote low density wing of the Small Magellanic Cloud, reveals numerous pre-main sequence stars as well as young stars on the main sequence. The resolved stellar content thus provides a basis for studying the star formation history into recent times and constraining several stellar population properties, such as the present day mass function, the initial mass function and the binary fraction. To better characterize the pre-main sequence population, we present a new set of model stellar evolutionary tracks for this evolutionary phase with metallicity appropriate for the Small Magellanic Cloud (Z = 0.004). We use a stellar population synthesis code, which takes into account a full range of stellar evolution phases to derive our best estimate for the star formation history in the region by comparing observed and synthetic color-magnitude diagrams. The derived present day mass function for NGC 602 is consistent with that resulting from the synthetic diagrams. The star formation rate in the region has increased with time on a scale of tens of Myr, reaching $0.3-0.7 times 10^{-3} M_odot yr^{-1}$ in the last 2.5 Myr, comparable to what is found in Galactic OB associations. Star formation is most complete in the main cluster but continues at moderate levels in the gas-rich periphery of the nebula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا