Do you want to publish a course? Click here

Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4

313   0   0.0 ( 0 )
 Added by Daniel Errandonea
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band-gap have been accurately determined. X-ray-diffraction, Raman, and optical-absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is isostructural, maintaining the monoclinic symmetry of the crystal, and having important consequences in the physical properties; among other a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO4. The results are discussed in comparison with related compounds and the effects of pressure in the electronic structure explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained.



rate research

Read More

Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the ground state properties satisfactorily. Under pressure PaN is found to undergo a structural transition from NaCl to the R-3m structure near 58 GPa. The high pressure behavior of the acoustic phonon branch along the (1,0,0) and (1,1,0) directions, and the C44 elastic constant are anomalous, which signals the structural transition. With GGA exchange-correlation, a topological transition in the charge density occurs near the structural transition which may be regarded as a quantum phase transition, where the order parameter obeys a mean field scaling law. However, the topological transition is absent when other exchange-correlation functionals are invoked (local density approximation (LDA) and hybrid functional). Therefore, this constitutes an example of GGA and LDA leading to qualitatively different predictions, and it is of great interest to examine experimentally whether this topological transition occurs.
In pursue of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO$_4$ under high pressure conditions, up until 24 GPa. We have found that PrVO$_4$ undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO$_4$-I--type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. Monazite phase is thus a metastable polymorph of PrVO$_4$. The monazite-BaWO$_4$-II transition is found to be reversible instead and occurs with a similar volume change. Here we report and discuss the axial and bulk compressibility of all phases. We also compare our results with those for other rare-earth orthovanadates. Finally, by means of optical-absorption experiments and resistivity measurements we determined the effect of pressure on the electronic properties of PrVO$_4$. We found that the zircon-monazite transition produces a collapse of the band gap and an abrupt decrease of the resistivity. The physical reasons for this behavior are discussed. Density-functional-theory simulations support our conclusions.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs; trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (010) plane at approximately 15 (21) degrees to the a axis for the case of our experimental (theoretical) study.
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl2O3. Although a phase transition is predicted at 5.8 GPa to the orthorhombic Rh2O3-II-type structure and at 24.2 GPa to the orthorhombic a-Gd2S3-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa.
The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line phase. In all three phases the non-planar TiOPc molecule is adsorbed on Ag(111) in an oxygen-up configuration with the molecular pi-conjugated backbone oriented parallel to the surface. The commensurate phase reveals a high packing density, containing two molecules at inequivalent adsorption sites within the unit cell. Both molecules assume different azimuthal orientations which is ascribed to preferred sites and azimuthal orientations with respect to the Ag(111) substrate and, to a lesser extent, to a minimization of repulsive Pauli interactions between adjacent molecules at short distances. At full saturation of the monolayer the latter interaction becomes dominant and the commensurate long range order is lost. DFT calculations have been used to study different adsorption geometries of TiOPc on Ag(111). The most stable configurations among those with pointing up oxygen atoms (bridge+, bridgex, topx) seem to correspond to those identified experimentally. The calculated dependence of the electronic structure and molecular dipole on the adsorption site and configuration is found to be rather small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا