Do you want to publish a course? Click here

Deep Chandra observation of the galaxy cluster WARPJ1415.1+3612 at z=1: an evolved cool-core cluster at high-redshift

488   0   0.0 ( 0 )
 Added by Joana Santos
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the deepest (370 ksec) Chandra observation of a high-redshift galaxy cluster, we perform a detailed characterization of the intra-cluster medium (ICM) of WARPJ1415.1+3612 at z=1.03. We also explore the connection between the ICM core properties and the radio/optical properties of the brightest cluster galaxy (BCG). We perform a spatially resolved analysis of the ICM to obtain temperature, metallicity and surface brightness profiles. Using the deprojected temperature and density profiles we accurately derive the cluster mass at different overdensities. In addition to the X-ray data, we use archival radio VLA imaging and optical GMOS spectroscopy of the central galaxy to investigate the feedback between the central galaxy and the ICM. The X-ray spectral analysis shows a significant temperature drop towards the cluster center, with a projected value of Tc = 4.6 pm 0.4 keV, and a remarkably high central iron abundance peak, Zc= 3.6 Zsun. The central cooling time is shorter than 0.1 Gyr and the entropy is equal to 9.9 keV cm2. We detect a strong [OII] emission line in the optical spectra of the BCG with an equivalent width of -25 AA, for which we derive a star formation rate within the range 2 - 8 Msun/yr. The VLA data reveals a central radio source coincident with the BCG and a faint one-sided jet-like feature with an extent of 80 kpc. The analysis presented shows that WARPJ1415 has a well developed cool core with ICM properties similar to those found in the local Universe. Its properties and the clear sign of feedback activity found in the central galaxy in the optical and radio bands, show that feedback processes are already established at z~1. In addition, the presence of a strong metallicity peak shows that the central regions have been promptly enriched by star formation processes in the central galaxy already at z > 1.



rate research

Read More

We present a detailed study of the iron content of the core of the high-redshift cluster WARPJ1415.1+3612 (z=1.03). By comparing the central Fe mass excess observed in this system, M_Fe^exc = (1.67 +/- 0.40) x 10^9 M_sun, with those measured in local cool-core systems, we infer that the bulk of the mass excess was already in place at z=1, when the age of the Universe was about half of what it is today. Our measures point to an early and intense period of star formation most likely associated with the formation of the BCG. Indeed, in the case of the power-law delay time distribution with slope -1, which reproduces the data of WARPJ1415.1+3612 best, half of the supernovae explode within 0.4 Gyr of the formation of the BCG. Finally, while for local cool-core clusters the Fe distribution is broader than the near infrared light distribution of the BCG, in WARPJ1415.1+3612 the two distributions are consistent, indicating that the process responsible for broadening the Fe distribution in local systems has not yet started in this distant cluster.
We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44 radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_odot}$ (error bars correspond to 1 $sigma$). We fit the background-subtracted surface brightness profile with a single $beta$-model out to 44, finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 pm 0.20) times 10^{13} M_odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} times 10 ^{14} M_odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} times 10 ^{14}M_odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $zsim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $Lambda$CDM cosmology.
150 - Yuanyuan Su 2016
Abell~1142 is a low-mass galaxy cluster at low redshift containing two comparable Brightest Cluster Galaxies (BCG) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters with each containing one BCG. The BCGs are merging at a relative velocity of ~1200 km/s. This ongoing merger may have shock-heated the ICM from ~ 2 keV to above 3 keV, which would explain the anomalous L_X--T_X scaling relation for this system. This merger may have displaced the metal-enriched cool core of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.
We present a pilot X-ray study of the five most massive ($M_{500}>5 times 10^{14} M_{odot}$), distant (z~1), galaxy clusters detected via the Sunyaev-Zeldovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, constrained in the centre by Chandra and in the outskirts by XMM. We show that the Chandra-XMM combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM sensitivity allowing higher significance detection of faint substructures. The sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7$R_{500}$. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than observed in the local Universe. We compare with predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population. (abridged)
418 - Joana S. Santos 2010
In this contribution we trace the evolution of cool-core clusters out to z~1.3 using high-resolution Chandra data of three representative cluster samples spanning different redshift ranges. Our analysis is based on the measurement of the surface brightness (SB) concentration, c_SB, which strongly anti-correlates with the central cooling time and allows us to characterize the cool-core strength in low S/N data. We confirm a negative evolution in the fraction of cool-core clusters with redshift, in particular for very strong cool-cores. Still, we find evidence for a large population of well formed cool-cores at z ~ 1. This analysis is potentially very effective in constraining the nature and the evolution of the cool-cores, once large samples of high-z clusters will be available. In this respect, we explore the potential of the proposed mission Wide Field X-ray Telescope (WFXT) to address this science case. We conclude that WFXT provides the best trade-off of angular resolution, sensitivity and covered solid angle in order to discover and fully characterize the cool-core cluster population up to z=1.5.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا