Do you want to publish a course? Click here

Sofic dimension for discrete measured groupoids

168   0   0.0 ( 0 )
 Added by David Kerr
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

For discrete measured groupoids preserving a probability measure we introduce a notion of sofic dimension that measures the asymptotic growth of the number of sofic approximations on larger and larger finite sets. In the case of groups we give a formula for free products with amalgamation over an amenable subgroup. We also prove a free product formula for measure-preserving actions.



rate research

Read More

129 - Hanfeng Li 2011
We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-Lindenstrauss-Weiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.
203 - Lei Jin , Yixiao Qiao 2021
We refine two results in the paper entitled ``Sofic mean dimension by Hanfeng Li, improving two inequalities with two equalities, respectively, for sofic mean dimension of typical actions. On the one hand, we study sofic mean dimension of full shifts, for which, Li provided an upper bound which however is not optimal. We prove a more delicate estimate from above, which is optimal for sofic mean dimension of full shifts over arbitrary alphabets (i.e. compact metrizable spaces). Our refinement, together with the techniques (in relation to an estimate from below) in the paper entitled ``Mean dimension of full shifts by Masaki Tsukamoto, eventually allows us to get the exact value of sofic mean dimension of full shifts over any finite dimensional compact metrizable spaces. On the other hand, we investigate finite group actions. In contrast to the case that the acting group is infinite (and amenable), Li showed that if a finite group acts continuously on a finite dimensional compact metrizable space, then sofic mean dimension may be different from (strictly less than) the classical (i.e. amenable) mean dimension (an explicitly known value in this case). We strengthen this result by proving a sharp lower bound, which, combining with the upper bound, gives the exact value of sofic mean dimension for all the actions of finite groups on finite dimensional compact metrizable spaces. Furthermore, this equality leads to a satisfactory comparison theorem for those actions, deciding when sofic mean dimension would coincide with classical mean dimension. Moreover, our two results, in particular, verify for a typical class of sofic group actions that sofic mean dimension does not depend on sofic approximation sequences.
A dynamical system is a pair $(X,G)$, where $X$ is a compact metrizable space and $G$ is a countable group acting by homeomorphisms of $X$. An endomorphism of $(X,G)$ is a continuous selfmap of $X$ which commutes with the action of $G$. One says that a dynamical system $(X,G)$ is surjunctive provided that every injective endomorphism of $(X,G)$ is surjective (and therefore is a homeomorphism). We show that when $G$ is sofic, every expansive dynamical system $(X,G)$ with nonnegative sofic topological entropy and satisfying the weak specification and the strong topological Markov properties, is surjunctive.
In this paper, we shall introduce $h$-expansiveness and asymptotical $h$-expansiveness for actions of sofic groups. By the definitions, each $h$-expansive action of sofic groups is asymptotically $h$-expansive. We show that each expansive action of sofic groups is $h$-expansive, and, for any given asymptotically $h$-expansive action of sofic groups, the entropy function (with respect to measures) is upper semi-continuous and hence the system admits a measure with maximal entropy. Observe that asymptotically $h$-expansive property was firstly introduced and studied by Misiurewicz for $mathbb{Z}$-actions using the language of topological conditional entropy. And thus in the remaining part of the paper, we shall compare our definitions of weak expansiveness for actions of sofic groups with the definitions given in the same spirit of Misiurewiczs ideas when the group is amenable. It turns out that these two definitions are equivalent in this setting.
354 - Richard Garner 2019
Bergman has given the following abstract characterisation of the inner automorphisms of a group $G$: they are exactly those automorphisms of $G$ which can be extended functorially along any homomorphism $G rightarrow H$ to an automorphism of $H$. This leads naturally to a definition of inner automorphism applicable to the objects of any category. Bergman and Hofstra--Parker--Scott have computed these inner automorphisms for various structures including $k$-algebras, monoids, lattices, unital rings, and quandles---showing that, in each case, they are given by an obvious notion of conjugation. In this note, we compute the inner automorphisms of groupoids, showing that they are exactly the automorphisms induced by conjugation by a bisection. The twist is that this result is false in the category of groupoids and homomorphisms; to make it true, we must instead work with the less familiar category of groupoids and comorphisms in the sense of Higgins and Mackenzie. Besides our main result, we also discuss generalisations to topological and Lie groupoids, to categories and to partial automorphisms, and examine the link with the theory of inverse semigroups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا