Do you want to publish a course? Click here

A Successful Broad-band Survey for Giant Lya Nebulae I: Survey Design and Candidate Selection

206   0   0.0 ( 0 )
 Added by Moire Prescott
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Giant Lya nebulae (or Lya blobs) are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrow-band Lya nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lya nebulae at 2<z<3 within deep broad-band imaging and have carried out a survey of the 9.4 square degree NOAO Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically-selected sample of 79 candidates, which includes one previously discovered Lya nebula.



rate research

Read More

Using a systematic broad-band search technique, we have carried out a survey for large Lya nebulae (or Lya blobs) at 2<z<3 within 8.5 square degrees of the NOAO Deep Wide-Field Survey (NDWFS) Bootes field, corresponding to a total survey comoving volume of ~10^8 h_70^-3 Mpc^3. Here, we present our spectroscopic observations of candidate giant Lya nebulae. Of 26 candidates targeted, 5 were confirmed to have Lya emission at 1.7<z<2.7, four of which were new discoveries. The confirmed Lya nebulae span a range of Lya equivalent widths, colors, sizes, and line ratios, and most show spatially-extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Lya nebulae lying within the redshift desert (i.e., 1.2<z<1.6). Our spectroscopic follow-up confirms the power of using deep broad-band imaging to search for the bright end of the Lya nebula population across enormous comoving volumes.
We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 sq.arcmin with a 3500-5800 Ang. bandpass under 5 Ang. full-width-half-maximum (FWHM) spectral resolution. The surveys best sensitivity for unresolved objects under photometric conditions is between 4-20 E-17 erg/s/sq.cm depending on the wavelength, and Ly-alpha luminosities between 3-6 E42 erg/s are detectable. This survey method complements narrowband and color-selection techniques in the search for high redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 104 galaxies via their high redshift Ly-alpha emission at 1.9<z<3.8, and the majority of the remainder objects are low redshift [OII]3727 emitters at z<0.56. The classification between low and high redshift objects depends on rest frame equivalent width, as well as other indicators, where available. Based on matches to X-ray catalogs, the active galactic nuclei (AGN) fraction amongst the Ly-alpha emitters (LAEs) is 6%. We also analyze the surveys completeness and contamination properties through simulations. We find five high-z, highly-significant, resolved objects with full-width-half-maximum sizes >44 sq.arcsec which appear to be extended Ly-alpha nebulae. We also find three high-z objects with rest frame Ly-alpha equivalent widths above the level believed to be achievable with normal star formation, EW(rest)>240 Ang.
We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of $0.1<z<0.7$ over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of $sigma_z sim 0.014 (1+z)$ that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to $z sim 0.7$.
Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sample optically unbiased through simple and well-defined selection criteria based on the high-energy properties of the bursts and their positions on the sky. Thanks to our extensive follow-up observations, this sample has now achieved a comparatively high degree of redshift completeness, and thus provides a legacy sample, useful for statistical studies of GRBs and their host galaxies. In this paper we present the survey design and summarize the results of our observing program conducted at the ESO Very Large Telescope (VLT) aimed at obtaining the most basic properties of galaxies in this sample, including a catalog of R and Ks magnitudes and redshifts. We detect the host galaxies for 80 % of the GRBs in the sample, although only 42 % have Ks-band detections, which confirms that GRB-selected host galaxies are generally blue. The sample is not uniformly blue, however, with two extremely red objects detected. Moreover, galaxies hosting GRBs with no optical/NIR afterglows, whose identification therefore relies on X-ray localizations, are significantly brighter and redder than those with an optical/NIR afterglow. Our spectroscopic campaign has resulted in 77 % now having redshift measurements, with a median redshift of 2.14 +- 0.18. TOUGH alone includes 17 detected z > 2 Swift GRB host galaxies suitable for individual and statistical studies. Seven hosts have detections of the Ly-alpha emission line and we can exclude an early indication that Ly-alpha emission is ubiquitous among GRB hosts, but confirm that Ly-alpha is stronger in GRB-selected galaxies than in flux-limited samples of Lyman break galaxies.
367 - A.Fontana 2014
We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the CANDELS UDS and GOODS-South fields. We describe here the survey strategy, the data reduction process, and the data quality. HUGS delivers the deepest and highest quality K-band images ever collected over areas of cosmological interest, and ideally complements the CANDELS data set in terms of image quality and depth. The seeing is exceptional and homogeneous, confined to the range 0.38-0.43. In the deepest region of the GOODS-S field, (which includes most of the HUDF) the K-band exposure time exceeds 80 hours of integration, yielding a 1-sigma magnitude limit of ~28.0 mag/sqarcsec. In the UDS field the survey matches the shallower depth of the CANDELS images reaching a 1-sigma limit per sq.arcsec of ~27.3mag in the K band and ~28.3mag in the Y-band, We show that the HUGS observations are well matched to the depth of the CANDELS WFC3/IR data, since the majority of even the faintest galaxies detected in the CANDELS H-band images are also detected in HUGS. We present the K-band galaxy number counts produced by combining the HUGS data from the two fields. We show that the slope of the number counts depends sensitively on the assumed distribution of galaxy sizes, with potential impact on the estimated extra-galactic background light (abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا