Does the Hubble Redshift Flip Photons and Gravitons?


Abstract in English

Due to the Hubble redshift, photon energy, chiefly in the form of CMBR photons, is currently disappearing from the universe at the rate of nearly 10^55 erg s^-1. An ongoing problem in cosmology concerns the fate of this energy. In one interpretation it is irretrievably lost, i.e., energy is not conserved on the cosmic scale. Here we consider a different possibility which retains universal energy conservation. If gravitational energy is redshifted in the same manner as photons, then it can be shown that the cosmic redshift removes gravitational energy from space at about the same rate as photon energy. Treating gravitational potential energy conventionally as negative energy, it is proposed that the Hubble shift flips positive energy (photons) to negative energy (gravitons) and vice versa. The lost photon energy would thus be directed towards gravitation, making gravitational energy wells more negative. Conversely, within astrophysical bodies of sufficient size, the flipping of gravitons to photons would give rise to a Hubble luminosity of magnitude -UH, where U is the internal gravitational potential energy of the object and H the Hubble constant. Evidence of such an energy release is presented in bodies ranging from planets, white dwarfs and neutron stars to supermassive black holes and the visible universe.

Download