Do you want to publish a course? Click here

Vibrationally induced flip motion of a hydroxyl dimer on Cu(110)

83   0   0.0 ( 0 )
 Added by Thomas Frederiksen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent low-temperature scanning-tunneling microscopy experiments [T. Kumagai et al., Phys. Rev. B 79, 035423 (2009)] observed the vibrationally induced flip motion of a hydroxyl dimer (OD)2 on Cu(110). We propose a model to describe two-level fluctuations and current-voltage characteristics of nanoscale systems which undergo vibrationally induced switching. The parameters of the model are based on comprehensive density-functional calculations of the systems vibrational properties. For the dimer (OD)2 the calculated population of the high and low conductance states, the I-V, dI/dV, and d2I/dV2 curves are in good agreement with the experimental results and underlines the different roles played by the free and shared OD stretch modes of the dimer.



rate research

Read More

Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This mechanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.
379 - Axel Wilson 2020
Au-Cu bimetallic nanoparticles (NPs) grown on TiO 2 (110) have been followed in-situ using grazing incidence x-ray diffraction and x-ray photoemission spectroscopy from their synthesis to their exposure to a CO/O 2 mixture at low pressure (P < 10-5 mbar) and at different temperatures (300 K-470 K). As-prepared samples are composed of two types of alloyed NPs: randomly oriented and
Recently, a new type of second-order topological insulator has been theoretically proposed by introducing an in-plane Zeeman field into the Kane-Mele model in the two-dimensional honeycomb lattice. A pair of topological corner states arise at the corners with obtuse angles of an isolated diamond-shaped flake. To probe the corner states, we study their transport properties by attaching two leads to the system. Dressed by incoming electrons, the dynamic corner state is very different from its static counterpart. Resonant tunneling through the dressed corner state can occur by tuning the in-plane Zeeman field. At the resonance, the pair of spatially well separated and highly localized corner states can form a dimer state, whose wavefunction extends almost the entire bulk of the diamond-shaped flake. By varying the Zeeman field strength, multiple resonant tunneling events are mediated by the same dimer state. This re-entrance effect can be understood by a simple model. These findings extend our understanding of dynamic aspects of the second-order topological corner states.
Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect free bismuth nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the bismuth nanoline at positive biases and as atomic size beads at negative biases. Density functional theory (DFT) simulations show that these features can be attributed to buckled Si dimers substituting for Bi dimers in the nanoline, where the sharp feature is the counterintuitive signature of these dimers flipping during scanning. The perfect correspondence between the STM data and the DFT simulation demonstrated in this study highlights the detailed understanding we have of the complex Bi-Si(001) Haiku system.
Observations of the four $^{2}Pi_{3/2},~J = 3/2$~ground state transitions of the hydroxyl radical (OH) have emerged as an informative tracer of molecular gas in the Galactic ISM. We discuss an OH spectral feature known as the `flip, in which the satellite lines at 1612 and 1720,MHz flip -- one from emission to absorption and the other the reverse -- across a closely blended double feature. We highlight 30 examples of the flip from the literature, 27 of which exhibit the same orientation with respect to velocity: the 1720,MHz line is seen in emission at more negative velocities. These same examples are also observed toward bright background continuum, many (perhaps all) show stimulated emission, and 23 of these are coincident in on-sky position and velocity with Htextsc{ii}~radio recombination lines. To explain these remarkable correlations we propose that the 1720,MHz stimulated emission originates in heated and compressed post-shock gas expanding away from a central Htextsc{ii}~region, which collides with cooler and more diffuse gas hosting the 1612,MHz stimulated emission. The foreground gas dominates the spectrum due to the bright central continuum, hence the expanding post-shock gas is blue-shifted relative to the stationary pre-shock gas. We employ non-LTE excitation modelling to examine this scenario, and find that indeed FIR emission from warm dust adjacent to the Htextsc{ii}~region radiatively pumps the 1612 MHz line in the diffuse, cool gas ahead of the expanding shock front, while collisional pumping in the warm, dense shocked gas inverts the 1720 MHz line.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا