Do you want to publish a course? Click here

Bootstrap percolation in power-law random graphs

203   0   0.0 ( 0 )
 Added by Hamed Amini
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A bootstrap percolation process on a graph $G$ is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infected and remains so forever. The parameter $rgeq 2$ is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse bootstrap percolation process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a power-law degree distribution, and initially there are $a(n)$ randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent $beta$, where $2 < beta < 3$, then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function $a_c(n)$ such that $a_c(n)=o(n)$ with the following property. Assuming that $n$ is the number of vertices of the underlying random graph, if $a(n) ll a_c(n)$, then the process does not evolve at all, with high probability as $n$ grows, whereas if $a(n)gg a_c(n)$, then there is a constant $eps>0$ such that, with high probability, the final set of infected vertices has size at least $eps n$. It turns out that when the maximum degree is $o(n^{1/(beta -1)})$, then $a_c(n)$ depends also on $r$. But when the maximum degree is $Theta (n^{1/(beta -1)})$, then $a_c (n)=n^{beta -2 over beta -1}$.



rate research

Read More

A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their joint probability distribution is Markov with respect to a tree. In this paper we consider the case of sequences of random graphs that converge locally to trees. In particular, we develop a sufficient condition for the tree and graph reconstruction problem to coincide. We apply such condition to colorings of random graphs. Further, we characterize the behavior of Ising models on such graphs, both with attractive and random interactions (respectively, `ferromagnetic and `spin glass).
Bootstrap percolation on a graph iteratively enlarges a set of occupied sites by adjoining points with at least $theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure, and we say that spanning occurs if every point eventually becomes occupied. The main question concerns the critical probability, that is, the minimal initial density that makes spanning likely. The graphs we consider are products of cycles of $m$ points and complete graphs of $n$ points. The major part of the paper focuses on the case when two factors are complete graphs and one factor is a cycle. We identify the asymptotic behavior of the critical probability and show that, when $theta$ is odd, there are two qualitatively distinct phases: the transition from low to high probability of spanning as the initial density increases is sharp or gradual, depending on the size of $m$.
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that in dimensions $dgeq 3$ the arboreal gas undergoes a percolation phase transition. This contrasts with the case of $d=2$ where all trees are finite for all $beta>0$. The starting point for our analysis is an exact relationship between the arboreal gas and a fermionic non-linear sigma model with target space $mathbb{H}^{0|2}$. This latter model can be thought of as the $0$-state Potts model, with the arboreal gas being its random cluster representation. Unlike the $q>0$ Potts models, the $mathbb{H}^{0|2}$ model has continuous symmetries. By combining a renormalisation group analysis with Ward identities we prove that this symmetry is spontaneously broken at low temperatures. In terms of the arboreal gas, this symmetry breaking translates into the existence of infinite trees in the thermodynamic limit. Our analysis also establishes massless free field correlations at low temperatures and the existence of a macroscopic tree on finite tori.
In the polluted bootstrap percolation model, vertices of the cubic lattice $mathbb{Z}^3$ are independently declared initially occupied with probability $p$ or closed with probability $q$. Under the standard (respectively, modified) bootstrap rule, a vertex becomes occupied at a subsequent step if it is not closed and it has at least $3$ occupied neighbors (respectively, an occupied neighbor in each coordinate). We study the final density of occupied vertices as $p,qto 0$. We show that this density converges to $1$ if $q ll p^3(log p^{-1})^{-3}$ for both standard and modified rules. Our principal result is a complementary bound with a matching power for the modified model: there exists $C$ such that the final density converges to $0$ if $q > Cp^3$. For the standard model, we establish convergence to $0$ under the stronger condition $q>Cp^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا