Do you want to publish a course? Click here

Nonclassical correlations in continuous-variable non-Gaussian Werner states

136   0   0.0 ( 0 )
 Added by Richard Tatham
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study nonclassical correlations beyond entanglement in a family of two-mode non-Gaussian states which represent the continuous-variable counterpart of two-qubit Werner states. We evaluate quantum discord and other quantumness measures obtaining exact analytical results in special instances, and upper and lower bounds in the general case. Non-Gaussian measurements such as photon counting are in general necessary to solve the optimization in the definition of quantum discord, whereas Gaussian measurements are strictly suboptimal for the considered states. The gap between Gaussian and optimal non-Gaussian conditional entropy is found to be proportional to a measure of non-Gaussianity in the regime of low squeezing, for a subclass of continuous-variable Werner states. We further study an example of a non-Gaussian state which is positive under partial transposition, and whose nonclassical correlations stay finite and small even for infinite squeezing. Our results pave the way to a systematic exploration of the interplay between nonclassicality and non-Gaussianity in continuous-variable systems, in order to gain a deeper understanding of -and to draw a bigger advantage from- these two important resources for quantum technology.



rate research

Read More

We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
Many different quantum information communication protocols such as teleportation, dense coding and entanglement based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is however hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order non-linearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the classical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum and the, suitably measured, amount of non-Gaussianity.
Currently available separability criteria for continuous-variable states are generally based on the covariance matrix of quadrature operators. The well-known separability criterion of Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and Simon [Phys. Rev. Lett. 84, 2726 (2000)] , for example, gives a necessary and sufficient condition for a two-mode Gaussian state to be separable, but leaves many entangled non-Gaussian states undetected. Here, we introduce an improvement of this criterion that enables a stronger entanglement detection. The improved condition is based on the knowledge of an additional parameter, namely the degree of Gaussianity, and exploits a connection with Gaussianity-bounded uncertainty relations [Phys. Rev. A 86, 030102 (2012)]. We exhibit families of non-Gaussian entangled states whose entanglement remains undetected by the Duan-Simon criterion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا