Do you want to publish a course? Click here

Computing a Nonnegative Matrix Factorization -- Provably

145   0   0.0 ( 0 )
 Added by Ankur Moitra
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

In the Nonnegative Matrix Factorization (NMF) problem we are given an $n times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$ where $A$ and $W$ are nonnegative matrices of size $n times r$ and $r times m$ respectively. In some applications, it makes sense to ask instead for the product $AW$ to approximate $M$ -- i.e. (approximately) minimize $ orm{M - AW}_F$ where $ orm{}_F$ denotes the Frobenius norm; we refer to this as Approximate NMF. This problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where $A$ and $W$ are computed using a variety of local search heuristics. Vavasis proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant $r$. Indeed NMF is most interesting in applications precisely when $r$ is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time $(nm)^{o(r)}$, 3-SAT has a sub-exponential time algorithm. This rules out substantial improvements to the above algorithm. 3. We give an algorithm that runs in time polynomial in $n$, $m$ and $r$ under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first example of a polynomial-time algorithm that provably works under a non-trivial condition on the input and we believe that this will be an interesting and important direction for future work.



rate research

Read More

Non-negative matrix factorization (NMF) has become a popular method for representing meaningful data by extracting a non-negative basis feature from an observed non-negative data matrix. Some of the unique features of this method in identifying hidden data put this method amongst the powerful methods in the machine learning area. The NMF is a known non-convex optimization problem and the initial point has a significant effect on finding an efficient local solution. In this paper, we investigate the most popular initialization procedures proposed for NMF so far. We describe each method and present some of their advantages and disadvantages. Finally, some numerical results to illustrate the performance of each algorithm are presented.
Fully unsupervised topic models have found fantastic success in document clustering and classification. However, these models often suffer from the tendency to learn less-than-meaningful or even redundant topics when the data is biased towards a set of features. For this reason, we propose an approach based upon the nonnegative matrix factorization (NMF) model, deemed textit{Guided NMF}, that incorporates user-designed seed word supervision. Our experimental results demonstrate the promise of this model and illustrate that it is competitive with other methods of this ilk with only very little supervision information.
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation of the residue matrix, we prove that it emph{converges} and also extend it to the nonnegative tensor factorization and introduce some variants of the method by imposing some additional controllable constraints such as: sparsity, discreteness and smoothness.
We propose a novel model for a topic-aware chatbot by combining the traditional Recurrent Neural Network (RNN) encoder-decoder model with a topic attention layer based on Nonnegative Matrix Factorization (NMF). After learning topic vectors from an auxiliary text corpus via NMF, the decoder is trained so that it is more likely to sample response words from the most correlated topic vectors. One of the main advantages in our architecture is that the user can easily switch the NMF-learned topic vectors so that the chatbot obtains desired topic-awareness. We demonstrate our model by training on a single conversational data set which is then augmented with topic matrices learned from different auxiliary data sets. We show that our topic-aware chatbot not only outperforms the non-topic counterpart, but also that each topic-aware model qualitatively and contextually gives the most relevant answer depending on the topic of question.
146 - Stephen A. Vavasis 2007
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a polynomial-time local search heuristic exists.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا