Generation of scale invariant density perturbations in a conformally invariant Inert Higgs doublet model


Abstract in English

If a Higgs field is conformally coupled to gravity, then it can give rise to the scale invariant density perturbations. We make use of this result in a realistic inert Higgs doublet model, where we have a pair of Higgs doublets conformally coupled to the gravity in the early universe. The perturbation of the inert Higgs is shown to be the scale invariant. This gives rise to the density perturbation observed through CMB by its couplings to the standard model Higgs and the subsequent decay. Loop corrections of this conformally coupled system gives rise to electroweak symmetry breaking. We constrain the couplings of the scalar potential by comparing with the amplitude and spectrum of CMB anisotropy measured by WMAP and this model leads to a prediction for the masses of the lightest Higgs and the other scalars.

Download