Do you want to publish a course? Click here

Discrete Mass Ejections from the Be/X-ray Binary A0535+26/HD245770

142   0   0.0 ( 0 )
 Added by Jingzhi Yan
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the long-term optical spectroscopic observations on the Be/X-ray binary A0535+26 from 1992 to 2010. Combining with the public V-band photometric data, we find that each giant X-ray outburst occurred in a fading phase of the optical brightness. The anti-correlation between the optical brightness and the H$alpha$ intensity during our 2009 observations indicates a mass ejection event had taken place before the 2009 giant X-ray outburst, which might cause the formation of a low-density region in the inner part of the disk. The similar anti-correlation observed around 1996 September indicates the occurrence of the mass ejection, which might trigger the subsequent disk loss event in A0535+26.



rate research

Read More

We have analyzed 3 observations of the High Mass X-ray Binary A0535+26 performed by the Rossi X-ray Timing Explorer (RXTE) 3, 5, and 6 months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Re-analysis of 2 earlier RXTE observations made 4 years after the 1994 outburst, original BeppoSAX observations 2 years later, re-analysis of 4 EXOSAT observations made 2 years after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ~2 to <1 x 10^{-11} ergs/cm2/s over 6.5 years after outburst. Detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built-up at the corotation radius or from an isotropic stellar wind.
137 - F. Giovannelli 2014
The optical behaviour of the Be star in the high-mass X-ray transient A0535+26/HDE245770 shows that at periastron the luminosity is typically enhanced by 0.02 to a few tenths magnitude, and the X-ray outburst occurs eight days after the periastron. Indeed, at the periastron an increase of the mass flux occurs. This sort of flush reaches the external part of the temporary accretion disk around the neutron star and moves to the hot central parts of the accretion disk and the neutron star surface. The time necessary for this way is dependent on the turbulent viscosity in the accretion disk, as discussed by Giovannelli, Bisnovatyi-Kogan, and Klepnev (2013) (GBK13). In this paper we will show the behaviour of this system in optical band around the predicted periastron passage on 21st February 2014, by using the GBK13 ephemeris that we used to schedule our spectroscopic and photometric optical observations. Spectroscopic unusual activity detected in the Balmer lines and the enhancement in the emission in B, V, and R bands around the periastron passage, and the subsequent X-ray event definitively demonstrate the existence of about 8 day delay between optical and X-ray flares.
We present results obtained from an extensive near-infrared spectroscopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~111 day orbital period. This observation campaign is a part of the monitoring programme of selective Be/X-ray binary systems aimed at understanding the X-ray and near-IR properties at different orbital phases, especially during the periastron passage of the neutron star. The near-IR observations were carried out using the 1.2 m telescope at Mt. Abu IR observatory. Though the source was relatively faint for spectroscopic observations with 1.2 m telescope, we monitored the source during the 2011 February--March giant outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra take place at the periastron passage. Changes of such a striking nature were expected to be detectable in our spectra. Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst that could suggest a mild evacuation/truncation of the circumstellar disc of the Be companion. Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830, 1.7002 and 2.0585 micron. The presence of all hydrogen emission lines in the JHK spectra, along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases suggest that the near-IR line emitting regions of the disc are not significantly affected during the X-ray outburst.
We present the results of the observations of the giant bursts from the X-ray pu lsar A0535+26 made by HEXE onboard Mir-Kvant in April 1989, November 1993 and February 1994. The pulse periods were measured, pulse profiles in different energy bands were produced, and their variability was investigated. The power density spectra (PDS) in 2x10^(-3)-1 Hz range is presented, which shape is typical for flicker-noise processes, usually observed in black hole candidates. The noise rms grows with energy from ~20% at 20 keV to ~30% at 80 keV. The source photon spectrum in the 15-200 keV energy range and its variability over the pulse phase are reported. Approximately the shape of the spectrum can be described by the canonical model for X-ray pulsars with power-law index g~1.1, cut-off energy E_c~23 keV and folding energy E_f~19 keV. All these parameters are weakly dependent on the luminosity. The most significant deviation from this continuum is observed at ~100 keV in the spectrum of the main pulse maximum. This feature is interpreted as a cyclotron line. Comparison of the HEXE data with the data from BATSE/CGRO (Bildsten et al., 1997) shows that in the high luminosity state (L~10^38 erg/s) the pulsars pulse profile differs substantially from the pulse profile in the low-luminosity (L~5x10^36 erg/s) state. This difference is explained by the qualitative change of the polar cap structure with formation of the accretion columns.
We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our $4$ hour long set of overlapping observations with the Very Large Array, the Sub-millimeter Array, and the James Clerk Maxwell Telescope (SCUBA-2), covers 8 different frequency bands (including the first detection of a BHXB jet at $666 ,{rm GHz}/450mu m$), providing an unprecedented multi-frequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set we performed detailed MCMC modeling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming, and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of 8 bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well. With our best fit model, we provide detailed probes of jet speed, structure, energetics, and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا