Do you want to publish a course? Click here

Spacetime Symmetries and Z_3-graded Quark Algebra

150   0   0.0 ( 0 )
 Added by Richard Kerner
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate certain $Z_3$-graded associative algebras with cubic $Z_3$-invariant constitutive relations. The invariant forms on finite algebras of this type are given in the low dimensional cases with two or three generators. We show how the Lorentz symmetry represented by the $SL(2, {bf C})$ group emerges naturally without any notion of Minkowskian metric, just as the invariance group of the $Z_3$-graded cubic algebra and its constitutive relations. Its representation is found in terms of Pauli matrices. The relationship of this construction with the operators defining quark states is also considered, and a third-order analogue of the Klein-Gordon equation is introduced. Cubic products of its solutions may provide the basis for the familiar wave functions satisfying Dirac and Klein-Gordon equations.



rate research

Read More

In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the $SU(3)$ colour, the $SU(2)$ flavour, and broken $SU(3)$ providing the family triplets. oindent In this paper we argue that internal and external (i.e. space-time) symmetries are entangled at least in the colour sector in order to introduce the spinorial quark fields in a way providing all the internal quarks degrees of freedom which do appear in the Standard Model. Because the $SU(3)$ colour algebra is endowed with natural $Z_3$-graded discrete automorphisms, in order to introduce entanglement the $Z_3$-graded version of Lorentz and Poincare algebras with their realizations are considered. The colour multiplets of quarks are described by $12$-component colour Dirac equations, with a $Z_3$-graded triplet of masses (one real and a Lee-Wick complex conjugate pair). We argue that all quarks in the Standard Model can be described by the $72$-component master quark sextet of $12$-component coloured Dirac fields.
Colour $SU(3)$ group is an exact symmetry of Quantum Chromodynamics, which describes strong interactions between quarks and gluons. Supplemented by two internal symmetries, $SU(2)$ and $U(1)$, it serves as the internal symmetry of the Standard Model, describing as well the electroweak interactions of quarks and leptons. The colour$SU(3)$ symmetry is exact, while two other symmetries are broken by means of the Higgs-Kibble mechanism. The three colours and fractional quarks charges with values $1/3$ and $2/3$ suggest that the cyclic group $Z_3$ may play a crucial role in quark field dynamics. In this paper we consequently apply the $Z_3$ symmetry to field multiplets describing colour quark fields. Generalized Dirac equation for coloured $12$-component spinors is introduced and its properties are discussed. Imposing $Z_3$-graded Lorentz and Poincare covariance leads to enlargement of quark fields multiplets and incorporates additional $Z_2 times Z_3$ symmetry which leads to the appearance of three generations (families) of distinct quark doublets.
We propose a modification of standard QCD description of the colour triplet of quarks describing quark fields endowed with colour degree of freedom by introducing a 12-component colour generalization of Dirac spinor, with built-in Z_3 grading playing an important algebraic role in quark confinement. In colour Dirac equations the SU(3) colour symmetry is entangled with the Z_3-graded generalization of Lorentz symmetry, containing three 6-parameter sectors related by Z_3 maps. The generalized Lorentz covariance requires simultaneous presence of 24 colour Dirac multiplets, which lead to the description of all internal symmetries of quarks: besides SU(3) times SU(2) times U(1), the flavour symmetries and three quark families.
170 - Mykola Dedushenko 2018
We review some aspects of the cutting and gluing law in local quantum field theory. In particular, we emphasize the description of gluing by a path integral over a space of polarized boundary conditions, which are given by leaves of some Lagrangian foliation in the phase space. We think of this path integral as a non-local $(d-1)$-dimensional gluing theory associated to the parent local $d$-dimensional theory. We describe various properties of this procedure and spell out conditions under which symmetries of the parent theory lead to symmetries of the gluing theory. The purpose of this paper is to set up a playground for the companion paper where these techniques are applied to obtain new results in supersymmetric theories.
The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseudo-spin symmetries. We analyze the presence of cylindrical symmetric scalar potentials which allows us to provide analytic solutions for the resultant field equation. By using an appropriate ansatz, we find that the radial equation is a biconfluent Heun-like differential equation. The solution of this equation provides us with more than one expression for the energy eigenvalues of the oscillator. We investigate these energies and find that there is a quantum condition between them. We study this condition in detail and find that it requires the fixation of one of the physical parameters involved in the problem. Expressions for the energy of the oscillator are obtained for some values of the quantum number $n$. Some particular cases which lead to known physical systems are also addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا