In this talk we show recent developments on few body systems involving mesons. We report on an approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. Within this approach, systems of two mesons and one baryon are studied, reproducing properties of the low lying $1/2^+$ states. On the other hand we also report on multirho and $K^*$ multirho states which can be associated to known meson resonances of high spin.
In this talk we review results from studies with unconventional many hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases one has experimental counterparts for the states found, while in some other cases they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
We present a complete calculation of nucleon-deuteron scattering as well as ground and low-lying excited states of light nuclei in the mass range A=3-16 up through next-to-next-to-leading order in chiral effective field theory using semilocal coordinate-space regularized two- and three-nucleon forces. It is shown that both of the low-energy constants entering the three-nucleon force at this order can be reliably determined from the triton binding energy and the differential cross section minimum in elastic nucleon-deuteron scattering. The inclusion of the three-nucleon force is found to improve the agreement with the data for most of the considered observables.
We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems. For this purpose we devote the discussions in the introduction to show how the input two-body amplitudes can be easily obtained using techniques of the chiral unitary theory, or its extensions to the heavy quark sector. We then briefly explain how these amplitudes can be used to solve the Faddeev equations or a simpler version obtained by treating the three-body scattering as that of a particle on a fixed center. Further, we give some examples of the results obtained by studying systems involving mesons. We have also addressed the field of many meson systems, which is currently almost unexplored, but for which we envisage a bright future. Finally, we give a complete list of works dealing with unconventional few-body systems involving one or several mesons, summarizing in this way the findings on the topic, and providing a motivation for those willing to investigate such systems.
Transport equations for autonomous driven Fermionic quantum systems are derived with the help of statistical assumptions and of the Markov approximation. The statistical assumptions hold if the system consists of subsystems within which equilibration is sufficiently fast. The Markov approximation holds if the level density in each subsystem is sufficiently smooth in energy. The transport equation describes both, relaxation of occupation probability among subsystems at equal energy that leads to thermalization, and the transport of the system to higher energy caused by the driving force. The laser-nucleus interaction serves as an example for the applicability and flexibility of the approach.
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n is the ground-state density. For finite Fermi systems, three-quasiparticle contributions are suppressed by the corresponding ratio of particle numbers N_q/N. This is illustrated for polarons in strongly interacting spin-polarized Fermi gases and for valence neutrons in neutron-rich calcium isotopes.