Do you want to publish a course? Click here

Reducing vortex losses in superconducting microwave resonators with microsphere patterned antidot arrays

131   0   0.0 ( 0 )
 Added by Daniel Bothner
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally investigate the vortex induced energy losses in niobium coplanar waveguide resonators with and without quasihexagonal arrays of nanoholes (antidots), where large-area antidot patterns have been fabricated using self-assembling microsphere lithography. We perform transmission spectroscopy experiments around 6.25 and 12.5 GHz in magnetic field cooling and zero field cooling procedures with perpendicular magnetic fields up to B=27 mT at a temperature T=4.2 K. We find that the introduction of antidot arrays into resonators reduces vortex induced losses by more than one order of magnitude.



rate research

Read More

In superconducting thin films, engineered lattice of antidots (holes) act as an array of columnar pinning sites for the vortices and thus lead to vortex matching phenomena at commensurate fields guided by the lattice spacing. The strength and nature of vortex pinning is determined by the geometrical characteristics of the antidot lattice (such as the lattice spacing $a_0$, antidot diameter $d$, lattice symmetry, orientation, etc) along with the characteristic length scales of the superconducting thin films, viz., the coherence length ($xi$) and the penetration depth ($lambda$). There are at least two competing scenarios: (i) multiple vortices sit on each of the antidots at a higher matching period, and, (ii) there is nucleation of vortices at the interstitial sites at higher matching periods. Furthermore it is also possible for the nucleated interstitial vortices to reorder under suitable conditions. We present our experimental results on NbN antidot arrays in the light of the above scenarios.
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms: quasiparticle generation and vortex motion. We find that quasiparticle generation is the dominant loss mechanism for parallel magnetic fields. For perpendicular fields, the dominant loss mechanism is vortex motion or switches from quasiparticle generation to vortex motion, depending on cooling procedures. In particular, we introduce a plot of the quality factor versus the resonance frequency as a general method for identifying the dominant loss mechanism. We calculate the expected resonance frequency and the quality factor as a function of the magnetic field by modeling the complex resistivity. Key parameters characterizing microwave loss are estimated from comparisons of the observed and expected resonator properties. Based on these key parameters, we find a niobium resonator whose thickness is similar to its penetration depth is the best choice for X-band electron spin resonance applications. Finally, we detect partial release of the Meissner current at the vortex penetration field, suggesting that the interaction between vortices and the Meissner current near the edges is essential to understand the magnetic field dependence of the resonator properties.
78 - U. Welp 2002
Nb films containing extended arrays of holes with 45-nm diameter and 100-nm spacing have been fabricated using anodized aluminum oxide (AAO) as substrate. Pronounced matching effects in the magnetization and Little-Parks oscillations of the superconducting critical temperature have been observed in fields up to 9 kOe. Flux pinning in the patterned samples is enhanced by two orders of magnitude as compared to unpatterned reference samples in applied fields exceeding 5 kOe. Matching effects are a dominant contribution to vortex pinning at temperatures as low as 4.2 K due to the extremely small spacing of the holes.
We have generated frequency combs spanning 0.5 to 20 GHz in superconducting half wave resonators at T=3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high nonlinearity, low frequency dispersion, and high critical temperature. The combs nucleate as sidebands around multiples of the pump frequency. Selection rules for the allowed frequency emission are calculated using perturbation theory and the measured spectrum is shown to agree with the theory. The sideband spacing is measured to be accurate to 1 part in 10 million. The sidebands coalesce into a continuous comb structure that has been observed to cover at least 6 octaves in frequency.
The use of artificial defects is known to enhance the superconducting critical parameters of thin films. In the case of conventional superconductors, regular arrays of submicron holes (antidots) substantially increase the critical temperature Tc(H) and critical current Ic(H) for all fields. Using electrical transport measurements, we study the effect of placing an additional small antidot in the unit cell of the array. This composite antidot lattice consists of two interpenetrating antidot square arrays with a different antidot size and the same lattice period. The smaller antidots are located exactly at the centers of the cells of the array of large antidots. We show that the composite antidot lattice can trap a higher number of flux quanta per unit cell inside the antidots, compared to a reference antidot film without the additional small antidots in the center of the cells. As a consequence, the field range in which an enhanced critical current is observed is considerably expanded. Finally, the possible stable vortex lattice patterns at several matching fields are determined by molecular dynamics simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا