Do you want to publish a course? Click here

Physical properties of galactic winds using background quasars

145   0   0.0 ( 0 )
 Added by N. Bouche
 Publication date 2011
  fields Physics
and research's language is English
 Authors N. Bouche




Ask ChatGPT about the research

Background quasars are potentially sensitive probes of galactic outflows provided that one can determine the origin of the absorbing material since both gaseous disks and strong bipolar outflows can contribute to the absorption cross-section. Using a dozen quasars passing near spectroscopically identified galaxies at $zsim0.1$, we find that the azimuthal orientation of the quasar sight-lines with strong MgII absorption (with EW>0.3 AA) is bi-modal: about half the MgII sight-lines are aligned with the major axis and the other half are within 30deg. of the minor axis, showing that bipolar outflows contribute significantly to the MgII cross-section. This bi-modality is also present in the instantaneous star-formation rates (SFRs) of the hosts. For the sight-lines aligned along the minor axis, a simple bi-conical wind model is able to reproduce the observed MgII kinematics and the MgII dependence with impact parameter b, (EW $propto b^{-1}$). Using our wind model, we can directly extract key wind properties such as the de-projected outflow speed $V_{out}$ of the cool material traced by MgII and the outflow rates. The outflow speeds are found to be 150-300 kms, i.e. of the order of the circular velocity, and smaller than the escape velocity by a factor of ~2. The outflow rates are typically two to three times the instantaneous SFRs. Our results demonstrates how background quasars can be used to measure wind properties with high precision.



rate research

Read More

We identify and characterize a population of luminous dust poor quasars at 0<z<5, similar in photometric properties to the objects found at z>6 previously. This class of active galactic nuclei has been known to show little IR emission from a dusty structure, but is yet poorly understood in terms of number evolution or of dependence on physical quantities. In order to better understand the luminous dust poor quasar properties, we compiled a rest-frame UV to IR library of 41,000 optically selected type-1 quasars with $L_{bol}>10^{45.7} erg s^{-1}$. After fitting the broad-band spectral energy distributions (SEDs) with accretion disk and dust components, we find 0.6% of our sample to be hot dust poor with a rest-frame 2.3 micron to 0.51 micron flux density ratio of -0.5 dex or less. The dust poor SEDs are blue in the UV-optical and weak in the MIR, such that their accretion disks are less obscured, and that hot dust emission traces that of warm dust down to the dust poor regime. At a given bolometric luminosity, dust poor quasars are lower in black hole mass and higher in Eddington ratio than general luminous quasars, suggesting that they are in a rapidly growing evolutionary state in which the dust poor phase appears as a short or rare phenomenon. The dust poor fraction increases with redshift, and possible implications for the evolution of the dust poor fraction are discussed.
We present results from our on-going MusE GAs FLOw and Wind (MEGAFLOW) survey, which consists of 22 quasar lines-of-sight, each observed with the integral field unit (IFU) MUSE and the UVES spectrograph at the ESO Very Large Telescopes (VLT). The goals of this survey are to study the properties of the circum-galactic medium around $zsim1$ star-forming galaxies. The absorption-line selected survey consists of 79 strong MgII absorbers (with rest-frame equivalent width (REW)$gtrsim$0.3AA) and, currently, 86 associated galaxies within 100 projected~kpc of the quasar with stellar masses ($M_star$) from $10^9$ to $10^{11}$ msun. We find that the cool halo gas traced by MgII is not isotropically distributed around these galaxies, as we show the strong bi-modal distribution in the azimuthal angle of the apparent location of the quasar with respect to the galaxy major-axis. This supports a scenario in which outflows are bi-conical in nature and co-exist with a coplanar gaseous structure extending at least up to 60 to 80 kpc. Assuming that absorbers near the minor axis probe outflows, the current MEGAFLOW sample allowed us to select 26 galaxy-quasar pairs suitable for studying winds. From this sample, using a simple geometrical model, we find that the outflow velocity only exceeds the escape velocity when $M_{star}lesssim 4times10^9$~msun, implying the cool material is likely to fall back except in the smallest halos. Finally, we find that the mass loading factor $eta$, the ratio between the ejected mass rate and the star formation rate (SFR), appears to be roughly constant with respect to the galaxy mass.
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only few quasars have been reported at $z > 6.5$ ($<$800 Myr after the Big Bang). In this work, we present six additional $z gtrsim 6.5$ quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 $z gtrsim 6.5$ quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of $zgtrsim$6.5 quasars show large blueshifts of the broad CIV 1549AA$,$emission line compared to the systemic redshift of the quasars, with a median value $sim$3$times$ higher than a quasar sample at $zsim$1; (2) we estimate the quasars black hole masses (M$rm_{BH}sim$0.3$-$5 $times$ 10$^{9}$ M$_{odot}$) via modeling of the MgII 2798AA$,$emission line and rest-frame UV continuum; we find that quasars at high redshift accrete their material (with $langle (L_{mathrm{bol}}/L_{mathrm{Edd}}) rangle = 0.39$) at a rate comparable to a luminosity-matched sample at lower$-$redshift, albeit with significant scatter ($0.4$ dex); (3) we recover no evolution of the FeII/MgII abundance ratio with cosmic time; (4) we derive near zone sizes; together with measurements for $zsim6$ quasars from recent work, we confirm a shallow evolution of the decreasing quasar near zone sizes with redshift. Finally, we present new millimeter observations of the [CII] 158 $mu$m emission line and underlying dust continuum from NOEMA for four quasars, and provide new accurate redshifts and [CII]/infrared luminosities estimates. The analysis presented here shows the large range of properties of the most distant quasars.
122 - Ilane Schroetter 2015
The physical properties of galactic winds are of paramount importance for our understanding of galaxy formation. Fortunately, they can be constrained using background quasars passing near star-forming galaxies (SFGs). From the 14 quasar$-$galaxy pairs in our VLT/SINFONI Mgii Program for Line Emitters (SIMPLE) sample, we reobserved the 10 brightest galaxies in H$_{alpha}$ with the VLT/SINFONI with 0.7 seeing and the corresponding quasar with the VLT/UVES spectrograph. Applying geometrical arguments to these ten pairs, we find that four are likely probing galactic outflows, three are likely probing extended gaseous disks, and the remaining three are not classifiable because they are viewed face-on. In this paper we present a detailed comparison between the line-of-sight kinematics and the host galaxy emission kinematics for the pairs suitable for wind studies. We find that the kinematic profile shapes (asymmetries) can be well reproduced by a purely geometrical wind model with a constant wind speed, except for one pair (towards J2357$-$2736) that has the smallest impact parameter b = 6 kpc and requires an accelerated wind flow. Globally, the outflow speeds are $sim$ 100 km/s and the mass ejection rates (or $dot M _{rm out}$) in the gas traced by the low-ionization species are similar to the star formation rate (SFR), meaning that the mass loading factor, $eta$ = $dot M _{rm out}$/SFR, is $sim$1.0. The outflow speeds are also smaller than the local escape velocity, which implies that the outflows do not escape the galaxy halo and are likely to fall back into the interstellar medium.
158 - Rajib Ganguly 2007
We have investigated a sample of 5088 quasars from the Sloan Digital Sky Survey Second Data Release in order to determine how the frequency and properties of broad absorptions lines (BALs) depend on black hole mass, bolometric luminosity, Eddington fraction (L/L_Edd), and spectral slope. We focus only on high-ionization BALs and find a number of significant results. While quasars accreting near the Eddington limit are more likely to show BALs than lower $L/L_{Edd}$ systems, BALs are present in quasars accreting at only a few percent Eddington. We find a stronger effect with bolometric luminosity, such that the most luminous quasars are more likely to show BALs. There is an additional effect, previously known, that BAL quasars are redder on average than unabsorbed quasars. The strongest effects involving the quasar physical properties and BAL properties are related to terminal outflow velocity. Maximum observed outflow velocities increase with both the bolometric luminosity and the blueness of the spectral slope, suggesting that the ultraviolet luminosity to a great extent determines the acceleration. These results support the idea of outflow acceleration via ultraviolet line scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا