Do you want to publish a course? Click here

Determining the dark matter mass with DeepCore

126   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass.



rate research

Read More

Weakly interacting massive particles (WIMPs) are one of the leading candidates for Dark Matter. So far we can use direct Dark Matter detection to estimate the mass of halo WIMPs only by fitting predicted recoil spectra to future experimental data. Here we develop a model-independent method for determining the WIMP mass by using experimental data directly. This method is independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nuclear cross section and can be used to extract information about WIMP mass with O(50) events.
We analyse the sensitivity of IceCube-DeepCore to annihilation of neutralino dark matter in the solar core, generated within a 25 parameter version of the minimally supersymmetric standard model (MSSM-25). We explore the 25-dimensional parameter space using scanning methods based on importance sampling and using DarkSUSY 5.0.6 to calculate observables. Our scans produced a database of 6.02 million parameter space points with neutralino dark matter consistent with the relic density implied by WMAP 7-year data, as well as with accelerator searches. We performed a model exclusion analysis upon these points using the expected capabilities of the IceCube-DeepCore Neutrino Telescope. We show that IceCube-DeepCore will be sensitive to a number of models that are not accessible to direct detection experiments such as SIMPLE, COUPP and XENON100, indirect detection using Fermi-LAT observations of dwarf spheroidal galaxies, nor to current LHC searches.
Dark matter decaying or annihilating into mu+mu- or tau+tau- has been proposed as an explanation for the e+e- anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to mu+mu-, and rule out decays to tau+tau- and annihilations to mu+mu- in less than five years of running. These analyses rely on measuring track-like events in IceCube+DeepCore from down-going nu_mu. In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube+DeepCore can rule out decays to mu+mu- in only three years of running, and rule out decays to tau+tau- and annihilation to mu+mu- in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon cross-section.
We present a focused study of a predictive unified model whose measurable consequences are immediately relevant to early discovery prospects of supersymmetry at the LHC. ATLAS and CMS have released their analysis with 35~pb$^{-1}$ of data and the model class we discuss is consistent with this data. It is shown that with an increase in luminosity the LSP dark matter mass and the gluino mass can be inferred from simple observables such as kinematic edges in leptonic channels and peak values in effective mass distributions. Specifically, we consider cases in which the neutralino is of low mass and where the relic density consistent with WMAP observations arises via the exchange of Higgs bosons in unified supergravity models. The magnitudes of the gaugino masses are sharply limited to focused regions of the parameter space, and in particular the dark matter mass lies in the range $sim (50-65) ~rm GeV$ with an upper bound on the gluino mass of $575~{rm GeV}$, with a typical mass of $450~{rm GeV}$. We find that all model points in this paradigm are discoverable at the LHC at $sqrt s = 7 rm ~TeV$. We determine lower bounds on the entire sparticle spectrum in this model based on existing experimental constraints. In addition, we find the spin-independent cross section for neutralino scattering on nucleons to be generally in the range of $sigma^{rm SI}_{ a p} = 10^{-46 pm 1}~rm cm^2$ with much higher cross sections also possible. Thus direct detection experiments such as CDMS and XENON already constrain some of the allowed parameter space of the low mass gaugino models and further data will provide important cross-checks of the model assumptions in the near future.
111 - Shohei Okawa , Yuji Omura 2020
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region, dark matter is thermally produced via its annihilation into neutrinos. In order to obtain the correct relic abundance and avoid collider bounds, a neutral scalar is required to be light while charged scalars need to be heavier than the electroweak scale. Such a mass spectrum is realized by adjusting quartic couplings in the scalar potential or introducing an extra singlet scalar. It turns out that the mass region of 10MeV-10GeV is almost free from experimental and observational constraints. We also point out that searches for extra neutrino flux from galactic dark matter annihilations with neutrino telescopes are the best way to test our model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا