On the Migration of Jupiter and Saturn: Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets


Abstract in English

We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. We identify six secular resonances between the nu_5 apsidal eigenfrequency of Jupiter and Saturn and the four eigenfrequencies of the terrestrial planets (g_{1-4}). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. If Jupiter and Saturn migrated with eccentricities comparable to their present day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (tau~5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g. tau<~ 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j=2,3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Further, results of orbital integrations show that very short migration timescales (tau<0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9+/-0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant planet migration to be complete in the first 30-100 Myr of solar system history.

Download