No Arabic abstract
We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 microns. An individual analysis of these new data leads to a planet radius of 2.21-0.16+0.15 Rearth, in good agreement with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 microns to 2.20+-0.12 Rearth. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing. We deduce an optical planet radius of 2.04+0.15 Rearth from this reanalysis of MOST data, which is consistent with the previous MOST result and with our Spitzer infrared radius. Assuming the achromaticity of the transit depth, we performed a global analysis combining Spitzer and MOST data that results in a planet radius of 2.17+-0.10 Rearth (13,820+-620 km). These results point to 55 Cnc e having a gaseous envelope overlying a rocky nucleus, in agreement with previous works. A plausible composition for the envelope is water which would be in super-critical form given the equilibrium temperature of the planet.
55 Cnc e is a transiting super-Earth (radius $1.88rm,R_oplus$ and mass $8rm, M_oplus$) orbiting a G8V host star on a 17-hour orbit. Spitzer observations of the planets phase curve at 4.5 $mu$m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allows us to study the underlying flux variations of the 55 Cnc system. We detected a phase variation with a full-amplitude of $72 pm 7$ ppm but do not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian, however the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet but may imply that circumplanetary or circumstellar material modulate the flux of the system. Further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time this year.
We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright stars. We expect it will be also possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.
Context. 55 Cnc e is a transiting super-Earth orbiting a solar-like star with an orbital period of 17.7 hours. In 2011, using the MOST space telescope, a quasi-sinusoidal modulation in flux was detected with the same period as the planetary orbit. The amplitude of this modulation was too large to be explained as the change in light reflected or emitted by the planet. Aims. The MOST telescope continued to observe 55 Cnc e for a few weeks per year over five years, covering 143 individual transits. This paper presents the analysis of the observed phase modulation throughout these observations and a search for the secondary eclipse of the planet. Methods. The most important source of systematic noise in MOST data is due to stray-light reflected from the Earth, which is modulated with both the orbital period of the satellite and the Earths rotation period. We present a new technique to deal with this source of noise, which we combined with standard detrending procedures for MOST data. We then performed Markov Chain Monte Carlo analyses of the detrended light curves, modeling the planetary transit and phase modulation. Results. We find phase modulations similar to those seen in 2011 in most of the subsequent years; however, the amplitude and phase of maximum light are seen to vary from 113 to 28 ppm and from 0.1 to 3.8 rad. The secondary eclipse is not detected, but we constrain the geometric albedo of the planet to less than 0.47 (2$sigma$). Conclusions. While we cannot identify a single origin of the observed optical modulation, we propose a few possible scenarios. Those include star-planet interaction or the presence of a transiting circumstellar torus of dust. However, a detailed interpretation of these observations is limited by their photometric precision. Additional observations at optical wavelengths could contribute to uncovering the underlying physical processes.
Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Due to the short orbital separation and host star brightness, 55 Cnc e provides one of the best opportunities for studying star-planet interactions (SPIs). We aim to understand possible SPIs in this system, which requires a detailed understanding of the stellar magnetic field and wind impinging on the planet. Methods. Using spectropolarimetric observations, and Zeeman Doppler Imaging, we derive a map of the large-scale stellar magnetic field. We then simulate the stellar wind starting from the magnetic field map, using a 3D MHD model. Results. The map of the large-scale stellar magnetic field we derive has an average strength of 3.4 G. The field has a mostly dipolar geometry, with the dipole tilted by 90 degrees with respect to the rotation axis, and dipolar strength of 5.8 G at the magnetic pole. The wind simulations based on this magnetic geometry lead us to conclude that 55 Cnc e orbits inside the Alfven surface of the stellar wind, implying that effects from the planet on the wind can propagate back to the stellar surface and result in SPI.
The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass-radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is $0.08 pm 0.05 R_p$. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.