No Arabic abstract
This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s time-resolved spectra are well described by a blackbody radiation model with a power-law component. The derived behavior of cooling is consistent with that expected from radiative cooling or expansion of the emission region. On the other hand, the other 1-s time-resolved spectra from GRB100707A is well described by a Band GRB model as well as with the thermal model. Although relative poor statistics prevent us to conclude, the energy dependence in decaying light curve is consistent with that expected in the former emission mechanism model.
We report on the spectral cross-calibration results of the Konus-Wind, the Suzaku/WAM, and the Swift/BAT instruments using simultaneously observed gamma-ray bursts (GRBs). This is the first attempt to use simultaneously observed GRBs as a spectral calibration source to understand systematic problems among the instruments. Based on these joint spectral fits, we find that 1) although a constant factor (a normalization factor) agrees within 20% among the instruments, the BAT constant factor shows a systematically smaller value by 10-20% compared to that of Konus-Wind, 2) there is a systematic trend that the low-energy photon index becomes steeper by 0.1-0.2 and Epeak becomes systematically higher by 10-20% when including the BAT data in the joint fits, and 3) the high-energy photon index agrees within 0.2 among the instruments. Our results show that cross-calibration based on joint spectral analysis is an important step to understanding the instrumental effects which could be affecting the scientific results from the GRB prompt emission data.
We have performed a joint analysis of prompt emission from four bright short gamma-ray bursts (GRBs) with the Suzaku-WAM and the Konus-Wind experiments. This joint analysis allows us to investigate the spectral properties of short-duration bursts over a wider energy band with a higher accuracy. We find that these bursts have a high E$_{rm peak}$, around 1 MeV and have a harder power-law component than that of long GRBs. However, we can not determine whether these spectra follow the cut-off power-law model or the Band model. We also investigated the spectral lag, hardness ratio, inferred isotropic radiation energy and existence of a soft emission hump, in order to classify them into short or long GRBs using several criteria, in addition to the burst duration. We find that all criteria, except for the existence of the soft hump, support the fact that our four GRB samples are correctly classified as belonging to the short class. In addition, our broad-band analysis revealed that there is no evidence of GRBs with a very large hardness ratio, as seen in the BATSE short GRB sample, and that the spectral lag of our four short GRBs is consistent with zero, even in the MeV energy band, unlike long GRBs. Although our short GRB samples are still limited, these results suggest that the spectral hardness of short GRBs might not differ significantly from that of long GRBs, and also that the spectral lag at high energies could be a strong criterion for burst classification.
In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least $sim$4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy ($E_{p}$) in the $ u f_{ u}$ spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.
We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $text{S/N}geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $alpha$, the high-energy power-law index $beta$, the peak energy in the observed $ u F_ u$ spectrum $E_text{p}$, and the difference between the low- and high-energy power-law indices $Delta s=alpha-beta$. Using the distributions of $Delta s$ and $beta$, the electron population index $p$ is found to be consistent with the moderately fast scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies $E_text{b,1}$ and $E_text{b,2}$, the middle segment power-law index $beta$, and the Planck function temperature $kT$. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.