Do you want to publish a course? Click here

The large-scale structure of journal citation networks

165   0   0.0 ( 0 )
 Added by Massimo Franceschet
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We analyse the large-scale structure of the journal citation network built from information contained in the Thomson-Reuters Journal Citation Reports. To this end, we take advantage of the network science paraphernalia and explore network properties like density, percolation robustness, average and largest node distances, reciprocity, incoming and outgoing degree distributions, as well as assortative mixing by node degrees. We discover that the journal citation network is a dense, robust, small, and reciprocal world. Furthermore, in and out node degree distributions display long-tails, with few vital journals and many trivial ones, and they are strongly positively correlated.



rate research

Read More

We present a novel algorithm and validation method for disambiguating author names in very large bibliographic data sets and apply it to the full Web of Science (WoS) citation index. Our algorithm relies only upon the author and citation graphs available for the whole period covered by the WoS. A pair-wise publication similarity metric, which is based on common co-authors, self-citations, shared references and citations, is established to perform a two-step agglomerative clustering that first connects individual papers and then merges similar clusters. This parameterized model is optimized using an h-index based recall measure, favoring the correct assignment of well-cited publications, and a name-initials-based precision using WoS metadata and cross-referenced Google Scholar profiles. Despite the use of limited metadata, we reach a recall of 87% and a precision of 88% with a preference for researchers with high h-index values. 47 million articles of WoS can be disambiguated on a single machine in less than a day. We develop an h-index distribution model, confirming that the prediction is in excellent agreement with the empirical data, and yielding insight into the utility of the h-index in real academic ranking scenarios.
The ever-increasing competitiveness in the academic publishing market incentivizes journal editors to pursue higher impact factors. This translates into journals becoming more selective, and, ultimately, into higher publication standards. However, the fixation on higher impact factors leads some journals to artificially boost impact factors through the coordinated effort of a citation cartel of journals. Citation cartel behavior has become increasingly common in recent years, with several instances being reported. Here, we propose an algorithm -- named CIDRE -- to detect anomalous groups of journals that exchange citations at excessively high rates when compared against a null model that accounts for scientific communities and journal size. CIDRE detects more than half of the journals suspended from Journal Citation Reports due to anomalous citation behavior in the year of suspension or in advance. Furthermore, CIDRE detects many new anomalous groups, where the impact factors of the member journals are lifted substantially higher by the citations from other member journals. We describe a number of such examples in detail and discuss the implications of our findings with regard to the current academic climate.
Several studies exist which use scientific literature for comparing scientific activities (e.g., productivity, and collaboration). In this study, using co-authorship data over the last 40 years, we present the evolutionary dynamics of multi level (i.e., individual, institutional and national) collaboration networks for exploring the emergence of collaborations in the research field of steel structures. The collaboration network of scientists in the field has been analyzed using author affiliations extracted from Scopus between 1970 and 2009. We have studied collaboration distribution networks at the micro-, meso- and macro-levels for the 40 years. We compared and analyzed a number of properties of these networks (i.e., density, centrality measures, the giant component and clustering coefficient) for presenting a longitudinal analysis and statistical validation of the evolutionary dynamics of steel structures collaboration networks. At all levels, the scientific collaborations network structures were central considering the closeness centralization while betweenness and degree centralization were much lower. In general networks density, connectedness, centralization and clustering coefficient were highest in marco-level and decreasing as the network size grow to the lowest in micro-level. We also find that the average distance between countries about two and institutes five and for authors eight meaning that only about eight steps are necessary to get from one randomly chosen author to another.
Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describe the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the birth of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specialization corresponding to the fields. Our results suggest that during the accumulation of knowledge in a given field, some papers are gradually becoming relatively more influential than most of the other papers.
Despite the increasing use of citation-based metrics for research evaluation purposes, we do not know yet which metrics best deliver on their promise to gauge the significance of a scientific paper or a patent. We assess 17 network-based metrics by their ability to identify milestone papers and patents in three large citation datasets. We find that traditional information-retrieval evaluation metrics are strongly affected by the interplay between the age distribution of the milestone items and age biases of the evaluated metrics. Outcomes of these metrics are therefore not representative of the metrics ranking ability. We argue in favor of a modified evaluation procedure that explicitly penalizes biased metrics and allows us to reveal metrics performance patterns that are consistent across the datasets. PageRank and LeaderRank turn out to be the best-performing ranking metrics when their age bias is suppressed by a simple transformation of the scores that they produce, whereas other popular metrics, including citation count, HITS and Collective Influence, produce significantly worse ranking results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا