Do you want to publish a course? Click here

Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling

212   0   0.0 ( 0 )
 Added by Jean-Daniel Bancal
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The experimental violation of Bell inequalities using spacelike separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, any such experimental violation could always be explained in principle through models based on hidden influences propagating at a finite speed v>c, provided v is large enough. Here, we show that for any finite speed v with c<v<infinity, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication does not require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Hence, assuming the impossibility of using nonlocal correlations for superluminal communication, we exclude any possible explanation of quantum correlations in terms of influences propagating at any finite speed. Our result uncovers a new aspect of the complex relationship between multipartite quantum nonlocality and the impossibility of signalling.



rate research

Read More

Since Bells theorem, it is known that the concept of local realism fails to explain quantum phenomena. Indeed, the violation of a Bell inequality has become a synonym of the incompatibility of quantum theory with our classical notion of cause and effect. As recently discovered, however, the instrumental scenario -- a tool of central importance in causal inference -- allows for signatures of nonclassicality that do not hinge on this paradigm. If, instead of relying on observational data only, we can also intervene in our experimental setup, quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible. That is, through interventions, we can witness the quantum behaviour of a system that would look classical otherwise. Using a photonic setup -- faithfully implementing the instrumental causal structure and allowing to switch between the observational and interventional modes in a run to run basis -- we experimentally observe this new witness of nonclassicality for the first time. In parallel, we also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modelling.
Quantum mechanics challenges our intuition on the cause-effect relations in nature. Some fundamental concepts, including Reichenbachs common cause principle or the notion of local realism, have to be reconsidered. Traditionally, this is witnessed by the violation of a Bell inequality. But are Bell inequalities the only signature of the incompatibility between quantum correlations and causality theory? Motivated by this question we introduce a general framework able to estimate causal influences between two variables, without the need of interventions and irrespectively of the classical, quantum, or even post-quantum nature of a common cause. In particular, by considering the simplest instrumental scenario -- for which violation of Bell inequalities is not possible -- we show that every pure bipartite entangled state violates the classical bounds on causal influence, thus answering in negative to the posed question and opening a new venue to explore the role of causality within quantum theory.
193 - Moses Fayngold 2015
A new causal paradox in superluminal signaling is presented. In contrast to the Tolman paradox with tachyon exchange between two parties, the new paradox appears already in a one-way superluminal signaling, even without creating the time loop. This produces a universal ban on superluminal signals, which is stronger than the ban imposed by the Tolman paradox. The analysis also shows that records of evolution of a superluminal object observed from two different reference frames may be time-reversed with respect to each other. Interactions with such objects could add some new features to spectroscopy. Even though relativity embraces superluminal motions, thus making the world symmetric with respect to the invariant speed barrier, their ineptness for signaling makes the symmetry incomplete. Key words: superluminal signaling, tachyons, the Tolman paradox
As with entanglement, different forms of Bell nonlocality arise in the multipartite scenario. These can be defined in terms of relaxations of the causal assumptions in local hidden-variable theories. However, a characterisation of all the forms of multipartite nonlocality has until now been out of reach, mainly due to the complexity of generic multipartite causal models. Here, we employ the formalism of Bayesian networks to reveal connections among different causal structures that make a both practical and physically meaningful classification possible. Our framework holds for arbitrarily many parties. We apply it to study the tripartite scenario in detail, where we fully characterize all the nonlocality classes. Remarkably, we identify new highly nonlocal causal structures that cannot reproduce all quantum correlations. This shows, to our knowledge, the strongest form of quantum multipartite nonlocality known to date. Finally, as a by-product result, we derive a non-trivial Bell-type inequality with no quantum violation. Our findings constitute a significant step forward in the understanding of multipartite Bell nonlocality and open several venues for future research.
We discuss models that attempt to provide an explanation for the violation of Bell inequalities at a distance in terms of hidden influences. These models reproduce the quantum correlations in most situations, but are restricted to produce local correlations in some configurations. The argument presented in [Bancal et al. Nature Physics 8, 867 (2012)] applies to all of these models, which can thus be proved to allow for faster-than-light communication. In other words, the signalling character of these models cannot remain hidden.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا