Do you want to publish a course? Click here

The origin of large molecules in primordial autocatalytic reaction networks

159   0   0.0 ( 0 )
 Added by Sanjay Jain
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set, being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs, a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.



rate research

Read More

To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discreteness-induced novel states.
We present a study on the selection of a variety of activity patterns among neurons that are connected in multiplex framework, with neurons on two layers with different functional couplings. With Hindmarsh-Rose model for the dynamics of single neurons, we analyze the possible patterns of dynamics in each layer separately, and report emergent patterns of activity like anti-phase oscillations in multi-clusters with phase regularities and enhanced amplitude and frequency with mixed mode oscillations when the connections are inhibitory. When they are multiplexed with neurons of one layer coupled with excitatory synaptic coupling and neurons of the other layer coupled with inhibitory synaptic coupling, we observe transfer or selection of interesting patterns of collective behaviour between the layers, inducing anti-phase oscillations and multi-cluster oscillations. While the revival of oscillations occurs in the layer with excitatory coupling, the transition from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory synaptic coupling. We also discuss how the selection of these patterns can be controlled by tuning the intra-layer or inter-layer coupling strengths or increasing the range of non-local coupling. With one layer having electrical coupling while the other synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized patterns of activity among neurons in both layers.
We study the effects of multiple binding sites in the promoter of a genetic oscillator. We evaluate the regulatory function of a promoter with multiple binding sites in the absence of cooperative binding, and consider different hypotheses for how the number of bound repressors affects transcription rate. Effective Hill exponents of the resulting regulatory functions reveal an increase in the nonlinearity of the feedback with the number of binding sites. We identify optimal configurations that maximize the nonlinearity of the feedback. We use a generic model of a biochemical oscillator to show that this increased nonlinearity is reflected in enhanced oscillations, with larger amplitudes over wider oscillatory ranges. Although the study is motivated by genetic oscillations in the zebrafish segmentation clock, our findings may reveal a general principle for gene regulation.
To study the dynamics of chemical processes, we often adopt rate equations to observe the change in chemical concentrations. However, when the number of the molecules is small, the fluctuations cannot be neglected. We often study the effects of fluctuations with the help of stochastic differential equations. Chemicals are composed of molecules on a microscopic level. In principle, the number of molecules must be an integer, which must only change discretely. However, in analysis using stochastic differential equations, the fluctuations are regarded as continuous changes. This approximation can only be valid if applied to fluctuations that involve a sufficiently large number of molecules. In the case of extremely rare chemical species, the actual discreteness of the molecules may critically affect the dynamics of the system. To elucidate the effects of the discreteness, we study an autocatalytic system consisting of several interacting chemical species with a small number of molecules through stochastic particle simulations. We found novel states, which were characterized as an extinction of molecule species, due to the discrete nature of the molecules. We also observed a strong dependence of the chemical concentrations on the size of the system, which was caused by transitions to the novel states.
100 - Gabin Laurent 2021
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one such mechanism in G. Laurent et al., PNAS (2021) based on the properties of large out of equilibrium chemical networks. We showed that in such networks, a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. This paper aims at clarifying some important points in that scenario, not covered by our previous work. We first analyze the various conventions used to measure chirality, introduce the notion of chiral symmetry of a network, and study its implications regarding the relative chiral signs adopted by different groups of molecules. We then propose a generalization of Franks model for large chemical networks, which we characterize completely using methods of random matrices. This analysis can be extended to sparse networks, which shows that the emergence of homochirality is a robust transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا